(19)	Europäisches Patentamt European Patent Office Office européen des brevets	(11) EP 0 852 155 B1
(12)	EUROPEAN PATER	NT SPECIFICATION
(45)	Date of publication and mention of the grant of the patent: 07.05.2003 Bulletin 2003/19	(51) Int CI.7: A63B 22/08
(21)	Application number: 98102693.3	
(22)	Date of filing: 17.02.1998	
(54)	Free wheel clutch mechanism for bicycle dri	ive train, an exercise bicycle and frame
	Freilaufkopplung für Fahrradantriebsvorrichtung	gen, Trainingsfahrrad und Rahmen
	Embrayage à roue libre pour vélo, vélo d'entraî	nement et cadre
	Designated Contracting States: AT BE CH DE DK ES FI FR GR IE IT LI NL PT SE Priority: 18.02.1997 US 38726 P	 Harding, Michael H. Boulder, Colorado 80301 (US) Wu, Mu-Chuan Tainan City (TW)
(43)	28.08.1997 US 919695 Date of publication of application: 08.07.1998 Bulletin 1998/28	 (74) Representative: Bosotti, Luciano et al c/o Buzzi, Notaro & Antonielli d'Oulx Via Maria Vittoria 18 10123 Torino (Π)
(73)	Proprietor: Nautilus, Inc. Louisville, Colorado 80027 (US)	(56) References cited: US-A- 4 673 177
	Inventors: Warner, Patrick Boulder, Colorado 80303 (US)	
		on of the grant of the European patent, any person may give

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention:

[0001] This invention relates generally to free wheeling devices, and more particularly to a free wheel clutch mechanism useful with crank operated exercise bicycles employing an inertia flywheel.

1

[0002] Exemplary of such bicycles is the prior art arrangement shown in US-A-4673177. There, an exercise bicycle is disclosed having a frame including a seat and handlebars. The exercise bicycle of US-A-4673177 further having a drive train including a crank arm and a pedal attached to the crank arm, the drive train being rotatably supported on the frame with a horizontally oriented axis of rotation. A high-inertia flywheet having a hub and positioned in a horizontal orientation and rotatable around a vertical axis is operably connected with the drive train, the vertically oriented rotational axis of the flywheel being offset 90 degrees from the horizontally oriented drive train axis. The drive train is driveable in a forward and a rearward direction to cause the flywheel to rotate accordingly.

BACKGROUND

[0003] The benefit of exercising on a direct drive exercise bicycle is well known. Direct drive exercise bicycles typically utilize a high-inertia flywheel driven by a fixed-gear drive train. The flywheel is driven by the rider up to relatively high revolutions per minute (rpm). Because of the direct drive feature, the drive train must rotate at a fixed ratio of rpm as compared to the flywheel based on the gear ratio. One benefit of the direct drive exercise bicycle is that the direct drive gear train provides "pedal-through assistance" for the rider. The "pedal-through" feature assists the rider by pushing the pedal through the top and bottom dead center pedal positions to help make the transition smooth and efficient. Other benefits are derived from the direct drive interaction between the inertia flywheel and the crank arms to which the rider's feet are attached. The inertia flywheel provides a smooth, non-jerky pedaling rhythm which provides an efficient and rigorous exercise for the rider. especially at relatively high rpms, such as 60 to 100 rpm. More specifically, the present invention relates to an exerase bicycle having the features set forth is claim 1 and a free-wheel clutch mechanism having the features set forth ni claim 16.

[0004] In the application of this invention to an inertia flywheel exercise bicycle, positive drive is required to rotate the inertia wheel in order to overcome regulated retardation torque applied by brake means used to provide resistance against which the rider/operator works. The inertia wheel provides means for continued drive train (wheel to crank to leg) movements during those periods when the crank is in top dead center or bottom dead center positions, where the rider's legs are some-

what weaker in providing rotary motion to the activating crank arms. The flywheel affords smooth and steady operation for the rider.

[0005] The direct drive relationship between the flywheel and the drive train is also a drawback of exercising on this type of bicycle. The direct drive relationship is inconvenient when the rider wishes to quickly stop the pedals, or loses the pedaling rhythm required to keep up with the rotating flywheel. In the usual flywheel exerciser employing such a direct drive relationship, it is necessary for the rider/operator to gradually decrease his cranking rate in order to slow down the inertia wheel. The rider cannot suddenly stop pedaling inasmuch as the inertia flywheel continues to drive the crank arms.

15 [0006] Of similar importance is the desirability of providing pedal assist to the rider/operator's legs when cranking at a speed slower than that necessary to positively drive the flywheel, and providing for a gradual reengagement and lockup between the pedal actuated drive shaft and the free wheeling flywheel in order to

avoid abrupt impact when reengaging the moving flywheel.

[0007] It is with these issues in mind that the present invention was developed.

SUMMARY OF THE INVENTION

[0006] The present invention in general terms concerns a clutch mechanism for use on an exercise bicycie. ard consequently, the present invention recognizes that it is desirable to have a free wheeling mechanism for an exerciser of the inertia flywheel type which provides means for selectively disengaging the flywheel from the drive means. The clutch mechanism allows for the beneficial direct-drive connection between the drive train and the flywheel, and also allows the drive train

and flywheel to move independently from one another, or "break free", when a sufficient force is applied to the drive train or the flywheel.

40 [0009] In general, the invention is an exercise bicycle including a frame having a seat and handlebars, a high-inertia flywheel having a hub at a center of rotation, the flywheel being rotatably supported on the frame at the hub, and a drive train including a drive sprocket, a crank 45 arm attached to and extending from the drive sprocket,

and a pedal attached to the crank arm, the drive train being rotatably supported by the frame. The drive train also includes a slave sprocket fixed to the flywheel at the hub, with the drive and slave sprockets connected in a direct-drive relationship, the drive train driveable in

a forward and rearward directions to cause the flywheel to rotate. A clutch mechanism is positioned in engagement with the slave sprocket and the hub to create a frictional engagement between the sprocket and the ⁵⁵ hub, and to establish a break-free force. When the drive train is actuated in the forward direction, the slave

sprocket and the hub move together under a mechanical engagement, and when the drive train is actuated in the

rearward direction under the influence of a force greater than the break-free force, the clutch mechanism slips between the slave sprocket and the hub, allowing the slave sprocket and the flywheel to move independently of one another. There is no mechanical engagement between the sprocket and the hub in the rearward direction as there is in the forward direction, established by the one-way bearing.

[0010] More specifically, the slave sprocket defines a sprocket collar mounted on the hub and also includes an engagement collar. A one-way bearing is mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently of the hub when the sprocket collar is driven in the rearward direction. An engagement flange fixedly mounted on the hub corresponds to the engagement collar, and compression means are mounted on the flywheel to bias the flange and the collar towards one another. A clutch material member is positioned between the engagement flange and the collar, and is clamped therebetween by the compression means to cause the engagement flange to move in conjunction with the sprocket collar. The engagement creates a break-free force required to cause the sprocket collar to move independently of the engagement flange. When the drive train is actuated in the forward direction, the sprocket collar and the engagement flange move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the engagement flange slips with respect to the collar, allowing the sprocket collar and the flywheel to move independently of one another.

[0011] In another embodiment, the slave sprocket defines a sprocket collar mounted on the hub and defines an inner and outer engagement collars. A one-way bearing is mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin freely on the hub when the sprocket collar is driven in the rearward direction. An inner engagement flange is fixedly mounted on the hub corresponding to the inner engagement collar, and an outer engagement flange is fixedly mounted on the hub corresponding to the outer engagement collar. Compression means are mounted on the flywheel to bias the inner flange and the inner collar towards one another, and to bias the outer flange and the outer collar towards one another. A clutch material member is positioned between the outer engagement flange and the outer collar, and between the inner engagement flange and the inner collar, and clamped therebetween by the compression means to cause the inner and outer engagement flanges to move in conjunction with the sprocket collar. The engagement creates a break-free force required to cause the sprocket collar to move independently of inner and outer engagement flanges. When the drive train is actuated in the forward direction,

the sprocket collar and the inner and outer flanges move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the inner and outer engagement flanges slip with respect to the inner and outer collars, allowing the sprocket collar and the flywheel to move independently of one another. There are other embodiments of the invention disclosed which perform the same function with very similar structure.

10 [0012] Also, the invention includes an exercise bicycle frame for use with the clutch mechanism. The frame includes a front support, a rear support, and a brace member extending between the front and rear ground supports. In addition, front forks are included that have

15 a top end and a bottom end, and are attached at the bottom end to the front ground support. The front forks rotatably support a high-inertia flywheel. A rear post is included that has a top member and a bottom member, the top member attaching to the bottom member in a

20 rear offset overlapping manner, the rear post defining a top end and a bottom end. The rear post is attached at the bottom end to the brace member. An articulated beam is attached to and extends from the top end of the front forks downwardly and rearwardly to a midpoint be-

tween the front forks and the rear post, then extends horizontally to the rear post at the intersection of the top and bottom members of the rear post. A rear truss extends from the top member of the rear post to the rear support. A handlebar is attached at the top end of the rear post. A front area is defined by the front forks, articulated beam, rear post and brace member forming a five-sided polygon, and a rear area is defined by the rear post, rear truss, and brace member forming a five-sided polygon.

[0013] Accordingly, it is a primary object of the present invention to provide a free-wheeling clutch mechanism that allows an exercise bike to include the direct-drive relationship between the drive train and the flywheel, and at the same time allow the drive train and the flywheel to turn independently from one another under cer-

[0014] Other aspects, features and details of the present invention can be more completely understood by reference to the following detailed description in conjunction with the drawings, and from the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

tain conditions.

40

45

50

55

Fig. 1 is a perspective view of an exercise bicycle incorporating the clutch mechanism of the present invention.

Fig. 2 is a schematic representation of the drive train of the exercise bicycle shown in Fig. 1.

Fig. 3 is a schematic representation of the drive train

of the exercise bicycle shown in Fig. 1.

Fig. 4 is a section taken along line 4-4 of Fig. 3.

5

Fig. 5A is a section taken along line 5A-5A of Fig. 2

Fig. 5B is a representative section similar to Fig. 5A showing the effects of worn clutch material.

Fig. 5C is a representative section similar to Fig. 5A showing a different type of compression member. Fig. 6 is a perspective view of a high-inertia flywheel incorporating one embodiment of the clutch mechanism of the present invention.

Fig. 7 is an exploded view of the flywheel of Fig. 6. Figs. 8 and 9 are elevation and perspective views, respectively, of a portion of the clutch mechanism. Fig. 10 is a side view of the sprocket collar member of the clutch mechanism of the present invention.

Fig. 11 is a top view of the sprocket collar shown in Fig. 10.

Fig. 12 is a section taken along line 12-12 of Fig: 10. Fig. 13 is an enlarged front perspective view of the sprocket collar of Fig. 10.

Fig. 14 is a side view of the clutch plate collar member of the clutch mechanism of the present invention.

Fig. 15 is a section taken along line 15-15 of Fig. 14. Fig. 16 is a front perspective view of the clutch plate collar member of the clutch mechanism of the present invention.

Fig. 17 is a perspective view of a high-inertia flywheel incorporating an alternative embodiment of the clutch mechanism of the present invention.

Fig. 18 is an enlarged perspective view of the embodiment of the present invention as shown in Fig. 17.

Fig. 19 is a section taken along line 19-19 of Fig. 18. Fig. 20 is a representative section of the embodiment shown in Fig. 19, showing the effect of worn clutch material.

Fig. 21 is an enlarged perspective view of another embodiment of the present invention.

Fig. 22 is a section taken along line 22-22 of Fig. 21. Fig. 23 is a section taken along line 23-23 of Fig. 22. Fig. 24 is a representative section of an alternative embodiment similar to that shown in Figs. 22, 23 and 24.

Fig. 25 is an elevation view of another embodiment of the present invention.

Fig. 26 is a section taken along line 26-26 of Fig. 25. Fig. 27 is an elevation view of another embodiment of the present invention.

Fig. 28 is a section taken along line 28-28 of Fig. 27. Fig. 29 is a section taken along line 29-29 of Fig. 28. Fig. 30 is a representative section of another embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0016] In light of the above items, a free wheel clutch

mechanism 40 has been developed for use on directdrive exercise bicycles 42 utilizing an inertia flywheel 44 (Figs. 1-4). While the present invention is described below associated with an exercise bicycle, it is contemplated that it could be used on normal bicycles or other exercise equipment, including magnetic resistive bicycles,

6

air-resistance bicycles and other non-bicycle exercisers (such as upper body exercisers), each having rotarydriven mechanisms (wheels, etc.), in the proper circumstances. The free wheel clutch mechanism works in a

10 stances. The free wheel clutch mechanism works in a direct-drive manner when the rider pedals the bicycle in the forward direction (counter-clockwise in Figs. 1 and 2, clockwise in Fig. 3), but has a release, or free wheel, characteristic when the rider applies a required force on

15 the pedal (or to the drive train somewhere) opposite or against the forward pedaling direction. Upon application of the appropriate opposite force ("break free force threshold"), the drive train free-wheels to allow the pedals to turn in the opposite direction with respect to, or 20 more slowly than, the rotation of the flywheel. The rider can then either simply drive the pedals at a relatively

lower rpm than the normal gear ratio to the flywheel, stop the pedals, or can rotate the pedals backwards. [0017] The opposite force required to be applied to the

pedals to cause the free wheeling action can be adjusted based on the design of the free wheel clutch mechanism, and is typically between 0.00 and 100 pounds, preferably 55 pounds at the pedals, depending on the application. The break free force threshold is based on
the static frictional engagement between the clutch material and the clutch plates which the clutch material is clamped between, as well as the mechanical advantage

provided through the drive train. The clutch plates, as defined below, are on different members that in normal
³⁵ circumstances are to rotate together. The friction force between the clutch material and the clutch plates facilitates this relationship. At a certain point (the break free force threshold), the opposing clutch plates overcome

the static frictional force and spin at different speeds (r.
p.m.'s) in the same direction, or in the opposite direction. The surface area of the clutch plates and the clutch plate material, the material property of the clutch plates and the clutch material, and the force at which the clutch plates clamp the clutch material are all factors that can
be specifically designed to affect the break free force

threshold. The break free force (as measured at the pedal) is affected also by the gear ratio and the length of the crank-arms.

[0018] The free wheel clutch mechanism 40 is integral
to the drive train of the exercise bicycle. The drive or gear train includes the drive sprocket 46, the crank arms
48 and associated pedals 50 attached to the drive sprocket, the drive axle assembly 52, the slave sprocket
54, and the chain or belt 56 that interconnects the drive

55 and slave sprockets, as shown in Fig. 3. Typically, the drive sprocket is rigidly mounted to one of the crank arms, and each crank arm is removably mounted to the drive axle assembly. The drive axle assembly is posi-

10

15

tioned in the hub on the frame to allow rotating movement, in either direction of the crank arms.

7

[0019] As shown in Fig. 4, the free wheel clutch mechanism 40 includes a sprocket collar 58 rotatably mounted on a slave axle assembly 60. The slave sprocket 54 is attached to the flywheel 44 adjacent to the hub 62. The slave axle assembly is mounted in the hub, and attaches to the frame to allow the flywheel to rotate with respect to the frame, under the force of the drive train through the movement of the slave axle assembly. The slave axle assembly is actually mounted in the hub, and includes an axle housing. Typically, the slave sprocket is mounted on the axle housing.

[0020] The free wheel clutch mechanism can be mounted in association with the drive sprocket, cranks and drive axle assembly, or can be mounted in association with the slave sprocket, slave axle assembly and flywheel. The placement of the free wheel clutch mechanism is a matter of choice dependent on the particular implementation. The only difference between the two positions of the free wheel clutch mechanism is that when mounted in association with the slave sprocket, the actuation of the free wheel clutch mechanism affects the movement of the chain and drive sprocket (slow down, stop or reverse). When the free wheel clutch mechanism is mounted in association with the drive sprocket, the actuation of the free wheel clutch mechanism allows the pedals and cranks to be slowed down, stopped, or reversed while the drive sprocket, chain and slave sprocket and flywheel continue to rotate. As described herein, the free wheel clutch mechanism is mounted in association with the slave sprocket.

1

[0021] More specifically as shown in Figs. 4 and 5A, the free wheel clutch mechanism includes a sprocket collar 58 (in this case a "slave" sprocket collar) that is mounted in a one-way drive relationship with the axle housing 64 such that the rotation of the slave sprocket collar in one direction directly drives the axle housing, and the rotation of the slave sprocket collar in the reverse direction does not drive the axle housing (allows "free wheeling"). This free wheeling relationship is established by one-way bearings 66 or a ratchet and pawl structure used between the slave sprocket collar and the axle housing.

[0022] The free wheeling motion of the slave sprocket collar 58 with respect to the axle housing 64 (and hence hub 62 and flywheel 44) is tempered, or reduced, by clutch plates 68 and clutch or braking material 70 acting upon the slave sprocket collar. A clutch plate collar 69 is secured to the axle housing 64 to fixedly position one end of the free wheel clutch mechanism 40. The clutch plates 68 are rigidly mounted to turn with the axle housing (and hence the hub and flywheel), and are forced into contact with the sprocket collar 58 by a biasing means, such as a spring member 72. The braking material 70 is positioned between the sprocket collar and the clutch plates to provide a frictional interface between the two. The braking material can be mounted to either

the sprocket collar, the clutch plates, or can be freefloating. The area of contact between the clutch plate and the sprocket collar (through the braking material) in combination with the compression force applied by the biasing means 72, creates the "break free" force required to be applied through the sprocket collar to allow the sprocket collar to "free wheel" on the axle housing If the applied force is not sufficient to overcome the

"break free" force, then the sprocket collar is not able to free wheel on the axle housing. [0023] The free wheeling clutch mechanism is selfadjusting under the bias force to accommodate for the reduction in thickness of the braking material 70 wearing out through use. The clutch plates 68 "float" on the axle housing to adjust and maintain contact with the sprocket

collar as the braking material becomes thinner. [0024] Particular embodiments of the free wheeling clutch mechanism are described in more detail below.

[0025] An exercise bicycle 42 incorporating the
present invention is shown in Fig. 1. The bicycle includes a frame 80 supported on a support surface by ground engagement members 82, an adjustable seat 84, adjustable handlebars 86, a flywheel 44 rotatably positioned between a pair of front forks 88 of the frame,
and a gear train 54 attached to the frame adjacent to

and below the seat. [0026] The frame 80, as shown in Fig. 1, includes front and rear ground supports 90 attached by a horizontal

frame brace member 92 extending there between, front forks 88, and a rear post 94. The front forks and rear post are attached by an articulated beam 96 sloping from the top of the front forks down to approximately midway between the front forks and the rear post, at which point the articulated beam extends horizontally rearwardly to engage the rear post. The articulated beam thus includes two members connected at an angle to one another, and extends between the top of the forks to the approximate midpoint of the rear post.

[0027] An aperture is formed at the top of the forks to receive a handlebar post 98, the handlebar post being vertically adjustable in the top of the forks by a pop-pin structure, as is known in the industry. Handlebars are attached to the top of the handlebar post in any known manner for use by the rider. An aperture is formed in the

⁴⁵ top of the rear post for receiving a seat post 100. The seat post is vertically adjustable in the rear post by a pop-pin structure, as is well known in the art. The seat can be forwardly and rearwardly adjusted on the seat post, such as by the mechanism disclosed in U.S. Pat-59 ent No. 4 772 069 to Szymski in addition to

ent No. 4,772,069 to Szymski, in addition to being vertically adjustable.
 [0028] The rear post 94 includes a top member 102

and a bottom member 104. The top member 102 is attached to extend from the rear side of the bottom member 104, and extends beyond the top of the bottom mem-

⁵⁵ ber 104, and extends beyond the top of the bottom member 104 in a rear-offset overlapping manner. The articulated beam 96 is affixed to the rear post 94 at the top of the bottom member 104 and the front side of the top

member 102. This attachment of the articulated beam to the rear post forms a strong structural connection. [0029] The crank arms 48 for each of the pedals 50 are attached to a hub 106 which is supported by the rear post at a location along the height of the rear post where the bottom and top members of the rear post coextend. The rear post 94 attaches to the horizontal frame member 92 about midway between the front and rear ground support members 90. A rear truss 107 extends at an angle from the rear post 94 down to the rear ground support member 90 for added strength. The frame is constructed of rectangular or hollow cylindrical steel tubing, as is known in the art. Rectangular tubing is preferred. [0030] The front area defined by the forks 88, articulated beam 96, rear post 94, and horizontal frame member 92 is a five-sided polygon. The rear area defined by the rear post 94, rear truss 107 and horizontal frame member 92 is also a five-sided polygon. A friction break 108 is mounted adjacent to the top of the front forks to selectively engage the opposing outer rims of the flywheel 44 to provide an additional friction load against which the rider must work in exercising on the exercise bicycle. This frame design, to the geometry of the frame structure, is very strong and durable, and is capable of withstanding the rigors of frequent use. The portion of the frame that supports the crank arms and chain ring is especially strong and durable in this design as a result of the overlapped construction of the rear post 94.

[0031] As shown in Figs. 1, 2 and 3, the drive or gear train (as described above) includes a drive sprocket 46 rotatably mounted on the frame, crank arms 48 and associated pedals 50 attached to the drive sprocket for driving the drive sprocket, a free wheel clutch assembly 40, a slave sprocket 54 attached on the flywheel 44, and a chain 56 connecting the drive sprocket to the slave sprocket, and to the free wheel clutch assembly. The chain could be replaced by a belt with accommodating modifications made to the drive and slave sprockets, with no adverse affect on the operation of the free wheeling clutch mechanism of the present invention.

[0032] As with a standard direct drive exercise bicycle, the rider pedals the exercise bicycle using the crank arms and pedals, to drive the drive sprocket 46. The chain 56, engaged between the drive sprocket and slave sprocket 54, causes the flywheel 44 to rotate at the given rpms based on the gear ratio between the drive sprocket and the slave sprocket.

[0033] The free wheel clutch mechanism 40 engages the flywheel, as is described below, to allow the transfer of rotational movement from the slave sprocket 54 to the flywheel 44 in a direct-drive relationship when driven in the forward direction Nomal pedaling circumstances include the use of the exercise bicycle during an organized exercise class or individually, and include starting at 0.00 rpms and increasing and decreasing the rpms as is required or desired for certain exercise programs, whether the rider is standing, sitting or alternating during use. The free wheel clutch mechanism 40 of the present invention maintains the "pedal-through" benefit of standard direct drive exercise bicycles. The pedalthrough benefit helps the rider pedal continuously and smoothly through the top and bottom pedal positions where riders typically are weakest.

[0034] The free wheel clutch mechanism 40 converts the direct drive relationship between the pedal revolutions and the flywheel revolutions to a "free wheel" relationship to allow the pedals 50 to be stopped, reversed

in direction, or rotated more slowly than the flywheel 44, when a sufficient force is applied in the reverse direction to either of the pedals or anywhere on the drive train (where the clutch mechanism is positioned on the inertia wheel) Examples of the application of an opposite force

15 include, but are not limited to, the intentional application of the reverse force by the rider while pedaling, for instance due to fatigue, or the contact of the pedal on the rider's lower leg when a foot is accidentally released from the pedal.

20 [0035] As shown in Figs. 4, 5A, 5B, 6 and 7, the free wheel clutch mechanism 40 mounts on the slave axle assembly 60 adjacent to the hub 62 of the flywheel 44. A cylindrical slave axle housing 64 is press-fit into a cylindrical axial bore formed through the hub 62 of the flywheel. The end of the axle housing extending from the hub is externally threaded to receive the clutch plate collar 69.

[0036] In the description below, the terms "inside" and "inner" refer to the end closest to the flywheel 44, and
30 the terms "outside" and "outer" refer to the end farthest from the flywheel. The clutch plate collar 69 includes a hollow cylindrical main body 118 with internal threads at one end for engagement with the external threads on the outer end of the axle housing 64. The clutch plate collar 69 has an outer radially extending engagement flange 120 attached to the outside end of the cylindrical main body 118, and an inner radially extending engagement flange 122 moveably attached to the inside end of the cylindrical main body.

[0037] Referring to Figs. 5A and 5B, the inner flange 40 122 is able to move axially (longitudinally) along the all or a portion of the length of the cylindrical main body 118 of the clutch plate collar 69. Referring to Figs. 7, 8 and 9, the inner flange 122 has a central bore 124, defining a plurality of radially inwardly extending keys 126. Cor-45 responding longitudinally extending slots 128 are formed on the surface of the cylindrical main body of the clutch plate collar 69 at its inner end, and extend at least partially along the length of the main body, to receive 50 the keys 126 and allow the inner flange 122 to move (float) axially along the length of the cylindrical main body, to the extent of the length of the slots. The benefit of the axial movement of the inner flange of the clutch plate collar 69 is described in more detail below. When the cylindrical main body 118 is threadedly connected 55 to the axle housing 64, the inner flange is positioned so the keys are slidably received in the slots, and the inner flange is retained on the end of the cylindrical main body

by the hub 62 or the axle housing (by end of axle housing as shown in Fig. 5A). The intersection of the keys 126 in the slots 128 make the inner flange turn with the cylindrical main body 118.

[0038] A one-way bearing 66, such as an INA shelltype roller clutch as found in the INA Bearing Company, Inc. of Fort Mill, South Carolina, catalog #305, 1988 at page 164, is mounted on the cylindrical main body 118 of the clutch plate collar 69 between the end of the slots 128 and the outer flange 120. The rollers of the bearing 66 engage the outer surface of the cylindrical main body member 118, and can slide (float) along the length of the main body, as described in more detail below. The one-way bearing permits direct-drive in one direction, and free-wheeling in the other rotational direction, also described in more detail below.

[0039] Referring to Figs. 5A, 7. and 10-13, a sprocket collar 58 defines a central bore and is positioned concentrically over the cylindrical main body member 118 of the clutch plate collar 69, and is attached to the outer race of the one-way bearing. The sprocket collar 58 defines an outer radially extending engagement collar 130 spaced away but substantially coextensive with the outer flange 120 of the clutch plate collar 69, an inner radially extending engagement collar 132 spaced away from but substantially coextensive with the inner flange 122 of the clutch plate collar 69, and the slave sprocket 54 formed about the outer surface of the sprocket collar 58 and between the inner and outer extending collars 130 and 132. The chain 56 engages the slave sprocket 54. The engagement collars 130 and 132 are extensions of the sidewalls of the sprocket collar, and provide more surface area if needed for the clutch-function they perform, as defined below.

[0040] The following explains the relative movement and drive characteristics of the clutch plate collar 69, sprocket collar 58, and flywheel 44 with the structure described at this point. When the slave sprocket 54 is driven in the forward direction (clockwise with respect to Fig. 3, counter-clockwise with respect to Figs. 1 and 2) by the chain 56, the one-way bearing 66 engages and causes the slave sprocket 54 to rotate the sprocket collar 58, in turn rotating the clutch plate collar 69, which in turn rotates the axle housing 64, which causes the flywheel to turn. If the slave sprocket 54 is caused to move in the opposite direction (counter-clockwise in Fig. 3, clockwise in Figs. 1 and 2), the one-way bearing would allow the sprocket collar 58 to free-wheel on the clutch plate collar 69.

[0041] Ideally a friction clutch or braking material 70 in the form of a flat washer (a disk with a central aperture formed therein) is positioned between the outer flange 120 of the clutch plate collar 69 and the outer collar 130 of the sprocket collar 58, and between the inner flange 122 of the clutch plate collar 69 and the inner collar 132 of the sprocket collar, as best shown in Figs. 5A, 5B. and 7. The friction clutch material 70 can be attached to either the outer flange 120 or the outer collar 130, and the friction clutch material 70 can be attached to either the inner flange 122 or the inner collar 132, to anchor the clutch material. The clutch material 70 can be felt, cork, standard brake material, or any material that provides a sufficient frictional relationship between the coextensive flanges and collars. Preferably, clutch facing,

as shown in McMaster-Carr Company catalog number 101, 1995, at page 2530, is used at a thickness of approximately 2.0 mm. Insert description for collar for inside diameter for free-floating and not connected to ei-

10 side diameter for free-floating and not connected to either side. In some instances, such as when the clutch material is not attached to either the clutch plate collar or the sprocket collar, but instead just floats between the two, a bearing washer is attached to the perimeter of the 15 central aperture to help support the clutch material on

the axle housing. [0042] Compression means, such as a compression spring 72, is positioned around the hub 62 of the flywheel 44 to engage the inner flange 122 of the clutch 20 plate collar 69 to bias the inner flange toward the outer flange 120 of the clutch plate collar. The spring 72, such as a jumbo compression spring in the McMaster-Carr catalog number 101, biases the inner flange 122 outwardly to clamp the clutch material 70 between it and 25 the inner collar 132, and also clamps the clutch material 70 between the outer collar 130 and the outer flange 120. The designed axial movement of the inner race (such as by sliding) on the cylindrical main bearing 66 (keys 126 sliding in the slots 128) allows the sprocket 30 collar 58 to float and transmit the force of the spring 72 to the outer flange 120. The combination of the bias force created by the spring 72, and the engagement of the clutch plate collar 69 and the sprocket collar 58 with the clutch material 70 inbetween creates a friction force 35 having an upper limit ("break free") force required to cause the sprocket collar 58 to move independently of

the clutch plate collar in the reverse direction.
[0043] For instance, where the spring force is approximately 225 pounds when fully compressed, and the
clutch material has an inner diameter of 1.65 inches and an outer diameter of 2.52 inches, where two clutch material disks were used (Fig. 5B), the break free force has been tested to be approximately 55 pounds at the pedal. It has been found that as the spring extends due to wear
of the clutch material, the spring force reduces to ap-

proximately 200 pounds, and the break free force actually increases. This is believed to be due to the fact that the engaging surfaces clamping the clutch material become polished and increase the surface area, thus in-⁵⁰ creasing the static friction force to be overcome.

[0044] The following explains the relative movement of the clutch plate collar 69, sprocket collar 58 and flywheel 44 given the structure described to this point. When the slave sprocket 54 is driven in the forward direction, as defined above, the one-way bearing creates the direct-drive relationship with the flywheel 44 desired for this type of exercise bicycle. When the slave sprocket 54 is driven in the backward direction, or there is a re-

verse force applied to the slave sprocket to attempt to rotate it in a direction opposite the direction of rotation of the flywheel, the one-way bearing does not drive the flywheel 44, but instead allows the pedals to free wheel. However, the friction force generated between the clutch plate collar 69 and the sprocket collar 58 due to the engagement of the outer flange 120 and the outer collar 130 with the inter-positioned clutch material 70, and the inner flange 122 and inner collar 132 with the inter-positioned clutch material 70, acts to create a threshold friction force that must be overcome to allow the rider to drive the sprocket collar 58 independent of the flywheel 44. If the force applied by the rider to the pedals is large enough to overcome the friction ("break free") force, then the pedals cause the sprocket collar 58 to turn independently of the clutch plate collar 69, with the clutch material 70 being rubbed and worn down in the process.

[0045] As the clutch material 70 wears down and becomes thinner, the spring 72 extends to push the inner flange 122 (floating) along the slots to maintain the appropriate force on the clutch material 70. The sprocket collar 58 is also pushed outwardly to maintain the desired force, and resulting "break free" characteristics. The spring 72 thus allows for automatic adjustment to compensate for the wear of the clutch material 70. The spring 72 must be selected to have a relatively predictable and stable spring constant along its length of extension to insure the development of the proper friction forces. The spring can be replaced with an elastomeric tube 73 having sufficient spring properties in the axial direction, such as is shown in Fig. 5C. Some elastomeric materials have very stable spring constants. One such suitable elastomeric material is a polyurethane made by Kryptonics Inc. of Louisville, Colorado. Preferably, the tube 73 is approximately 1 inch long, 0.887 inches when initially compressed, and has a wall thickness of approximately 0.225 inches. In addition, an adjustable compression spring could also be used that would allow the spring force to be adjusted to modify the break free force when desired.

[0046] The inner or outer clutch material 70 can be replaced by a bearing if it is desired to use only one clutch material 70. The break-free force threshold may be modified accordingly as a result.

[0047] Similar relative movement is found when the exercise bicycle incorporating the present invention is in use, and more clearly depicts the advantages of the free wheel clutch mechanism of the present invention. When a rider is exercising on the exercise bicycle, the forward drive of the drive train causes the slave sprocket 54 to drive the sprocket collar 58 in the direction of engagement of the one-way bearing, in the end to drive the flywheel 44 in a direct drive manner. If the rider desires, by applying a force of approximately 50 pounds in the opposite direction, the threshold friction force between the clutch plate collar 69, the sprocket collar 58 and the clutch material 70 is overcome (the "break free"

force), and the sprocket collar 58 can free wheel with respect to the clutch plate collar 69 and the flywheel 44. The sprocket collar 58 thus moves in the opposite direction with respect to the direction of rotation of the fly-

⁵ wheel 44. The rider can thus pedal irrespective of the movement of the flywheel 44 until the friction between the clutch plate collar and the sprocket collar (caused by the clutch material) reduces the rpms of the flywheel to a point where, based on the gear ratio, the rpms ¹⁰ match to cause "lock-up".

[0048] In a more extreme situation, if the foot of the rider slips off the pedal and the pedal strikes the rider's leg, a sufficient force is generated to overcome the "break free" force and the pedals can stop to reduce the

15 chance of serious injury, letting the flywheel continue to rotate until the friction force stops the rotation of the flywheel.

[0049] An axle 134 (Fig. 5A and 5B) is positioned through the bore in the hub, with associated bearings to support the flywheel 44 and allow it to rotate as driven by the gear train.

[0050] The one-way bearing is not necessary for the application to work on an exercise bicycle. However, without the one-way bearing the sprocket collar would

²⁵ "free wheel" in the forward direction too when the drive force was greater than the "break free" force, thus limiting the amount of force the rider could apply while pedaling the bicycle in the forward direction.

[0051] The one-way bearing 66 can be replaced by a
 ³⁰ spring-loaded ratchet and pawl drive mechanism found in normal bicycle applications, or other one way drive mechanisms that can functionally replace the one-way bearing described above. One such suitable commonly available ratchet and pawl mechanism is the LMA-8

³⁵ from the LIDA Machinery Company, Ltd. of Taoyuan, Taiwan, as shown in the Taiwan Bicycle Source 1997-98 catalog at p. 370.

[0052] Figs. 8 through 16 show details of some of the components described above.

40 [0053] An alternative embodiment of the free wheel clutch mechanism is shown in Figs. 17-20. This alternative embodiment works on the same principle as the first embodiment described above, except basically replaces the single large spring surrounding the hub 150 with

⁴⁵ the plurality of smaller springs 152 positioned between the flywheel 154 and the inner clutch plate 156. These plurality of springs 152 act to push the inner clutch plate 156 outwardly as the clutch material 158 wears down from use. As can best be seen in Figs. 19 and 20, each

50 of the plurality of springs surrounds a guide rod 160 mounted to the flywheel 154 which is received in a guide bore 162 mounted to and extending from the inside side of the inner clutch plate 156. The sliding interaction between the guide rod 160 and the guide bore 162 helps

⁵⁵ ensure that the inner clutch plate 156 is squarely moved outwardly under the bias of the springs as the clutch material wears as a result of use. The interaction of the guide rod with the guide bore also causes the inner

10

clutch plate 156 to turn with the flywheel 154 because the guide rods are laterally fixed in position inside the guide bores, and as the guide rods turn with the movement of the flywheel, they cause the inner clutch plate to turn also.

The axle housing 164 is press-fit into the hub [0054] 150 and extends from the flywheel 154, and has an outer end 166 with external threads. After the inner clutch plate 156 and associated compression springs 152 are mounted over the axle housing and positioned adjacent the hub, the slave gear collar 170 is positioned to engage the outer surface of the axle housing 164 as in the previous embodiment, including having the same bearing structure 172. The slave gear collar has an inner surface 174 adjacent the outer surface 176 of the inner clutch plate, between which is positioned an inner clutch material washer 178. The inner clutch material washer 178 is preferably fixed to either the outer surface of the inner clutch plate 156 or the inner surface of the slave gear collar 170. A set of gear teeth 180 are formed about the outer circumference of the slave gear collar 170 for receiving the chain used to drive the flywheel.

: -

[0055] The outer clutch plate 182 (or anchor plate) is then threaded on to the externally threaded outer end 184 of the axle housing. An outer clutch material washer 186 is positioned between the outer surface of the slave gear collar 170 and the inner surface of the outer clutch plate 182. Preferably, the outer clutch material washer 186 is fixed to either the outer surface of the slave gear collar 170 or the inner surface of the outer clutch plate 182. The outer clutch plate is fixed to the axle housing by a lock-nut 188 to keep the outer clutch plate from turning loose under the force of the free wheel mechanism.

[0056] This alternative embodiment of the present invention operates in fundamentally the same manner as the previously described embodiment. When a reverse force is applied to the drive train, normally through a reverse force being applied to the pedals, and this reverse force overcomes the "break free" force, the slave gear overcomes the friction force between the slave gear collar 170 and the outer clutch plate 182 and inner clutch plate 156 which rotate with the flywheel 154. This allows the flywheel to continue spinning while the drive train is either stopped, pedaled backwards, or pedaled more slowly than the flywheel is spinning. The bearings 172 connecting the slave gear collar 170 to the axle housing 164 are one-way bearings as described above, and when the drive train is actuated in the normal or forward direction, the bearings lock and act as a direct drive connection between the drive train and the flywheel.

[0057] When turned in the reverse direction, the bearings 172 allow the slave gear collar 170 to free-wheel, the free wheeling of which is restricted by the frictional engagement of the slave gear collar 170 with the surrounding clutch material 178, 186. The compression springs 152 apply the force to the inner clutch plate 156 which presses the inner clutch material 178 against the

slave gear collar. The slave gear collar 170 can move longitudinally on the axle housing 164 (the bearing allows small amounts of movement in this direction) and thus transmits a force to the outer clutch material 186, and finally to the outer clutch plate 182. As the inner or outer clutch material wears down, the springs 152 extend and push the inner clutch plate 156 outwardly and thus maintain the contact necessary for the frictional engagement between the inner clutch plate 156, the inner clutch material 178, the slave gear collar 170, the outer clutch material 186, and the outer clutch/anchor plate

182.
[0058] Fig. 20 shows the adjusted relationship of the structure of this alternative embodiment when the inner
¹⁵ and outer clutch material washers 178, 186 have worn down. Contrasting Figs. 19 and 20, note the gap between the inner clutch plate 156 and the outer end of the hub 150. The bearings 172 allow the slave gear collar 170 to move longitudinally on the axle housing 164.

20 Either one of the inner or outer clutch materials 178, 186 can be replaced with a bearing if it is determined that they are unnecessary.

[0059] Another alternative embodiment is shown in Figs. 21-23. In this alternative embodiment a Belleville
²⁵ washer 200 is mounted on the end of the axle housing 202 to bias the outer clutch plate 204 inwardly to create the desired friction force between the slave gear collar 206 and the outer and inner clutch plates 204, 208 through the inner and outer clutch material washers 210,

30 212. In the second alternative embodiment a retainer 214 having an outwardly flanged inner end 215 is threaded on to the end of the axle housing 202 extending from the hub 216, which has external threads. The outwardly extending flange 215 of the retainer butts up

against the hub 216. The inner clutch plate 208 is then positioned next to the outwardly extending flange 215 and is retained in rotational position therewith by keys in slots or by any other suitable attachment method, such as welding (as shown in Fig. 22). Alternatively, the
outwardly extending flange can act as the inner clutch plate.

[0060] An inner clutch material washer 210 is positioned adjacent to and in contact with the inner clutch plate 208, and the slave gear collar 206 is mounted over the cylindrical body of the retainer 214. The slave gear collar 206 is similar to the slave gear collars described in the previous two embodiments and includes a bearing 218 positioned between the slave gear collar 206 and the outer circumference of the retainer 214, the bearing

⁵⁰ 218 being a one-way bearing allowing the slave gear collar 206 to free-wheel when turned in a reverse direction, and locking to provide a direct drive when turned in the forward direction. Gear teeth 220 are formed on the outer circumference of the slave gear collar 206 for
 ⁵⁵ engagement with the chain of the drive train. An outer clutch plate 204 is positioned over the outer circumference

clutch plate 204 is positioned over the outer circumference of the retainer 214. As shown in Fig. 23, the outer clutch plate 204 defines a central bore 222 having at

9

least one key 224 formed for mating insertion into a corresponding slot formed in the retainer 214. The mating key and slot relationship between the outer clutch plate 204 and the retainer 214 makes the outer clutch plate turn with the flywheel because the retainer turns with the flywheel 226 and the rotational interference between the key and the slot causes the outer clutch plate 204 to turn also, in addition to allowing the outer clutch plate to float or move inwardly and outwardly with respect to the inner clutch plate 208 along the body of the retainer as the friction clutch material 210, 212 wears down.

[0061] The Belleville washer 200 is positioned about the end of the axle housing to engage the outer clutch plate 204 with the bias force. The bias force is created by an outer retainer 228 which defines a cylindrical main body 230 having external threads and an outwardly extending flange 232 at one end. The outer end of the axle housing 202 defines internal threading 234 such that the cylindrical main body 230 of the outer retainer 228 threads into the outer end of the axle housing 202 to the point where the outwardly extending flange 232 abuts the outer end of the axle housing and also engages the inner rim of the Belleville washer 200 to compress the Belleville washer against the outer clutch plate 204. The compression of the Belleville washer 200 against the outer clutch plate 204 causes the outer clutch plate to be biased inwardly against the outer friction clutch material 212, which is pushed against the slave gear collar 206, which in turn is allowed to relatively float on the outer surface of the inner retainer 214 to push against the inner clutch material 210 and in turn frictionally engage the inner clutch plate 208.

[0062] As the slave gear collar 206 is driven in the forward direction by the drive train, the one-way bearings 218 lock and create a direct drive relationship. When a sufficient reverse force is applied to the slave gear collar through the drive train, the one-way bearings release and allow the drive train collar to free-wheel under the influence of the frictional relationship with the inner and outer clutch plates, similar to the interaction as described with respect to the embodiments above.

[0063] As the clutch material 210, 212 wears down and becomes thinner, the Belleville washer 200 extends to continue to create a friction force in the clutch system by pushing the outer clutch plate 204 towards the inner clutch plate 208, thereby clamping the inner and outer clutch material and the slave gear collar 206 therebetween.

[0064] Another alternative embodiment is disclosed in Fig. 24 which shows two Belleville washers 240, 242 positioned back to back to allow for a longer adjustment stroke due to the wear of the inner and outer clutch material washers 244, 246. In this third embodiment the outwardly extending flange 248 of the second retainer 250 is enlarged to engage the outer rim of the second Belleville washer 240. Belleville washers are very stiff and provide a great deal of force through the length of their extension. [0065] Another alternative embodiment is disclosed in Figs. 25-26. This fourth alternative embodiment utilizes a band-brake to create the frictional break-free force. The band-brake 260 includes a retainer 262 fixed to the

- ⁵ flywheel 264 through which is positioned a spring loaded adjustment screw 266 which attaches to a housing 268. The toousing includes two guide slots 270 for slidably receiving tabs 272 formed on the flywheel. The housing is also fixed to the opposite ends of a belt 274. The sli¹⁰ dable engagement of the guide slots 270 on the tabs
 - 272 help ensure a properly oriented adjustment of the band-brake by the spring loaded screw. The slots are formed in the housing of the band-brake, the housing being attached to a belt, with the band-brake material

15 276 attached to the inside surface a reinforcement sheathing 278 of the belt (as best seen in Fig. 26). The tabs, spring loaded threaded screw, housing and belt are all fixed to rotate with the flywheel. The spring surrounding screw 266 makes the system self-adjusting for

20 wear of the band material by applying a preferably constant tension load on the belt through the housing. The selection of the spring constant properties of the spring determines the amount of tension on the belt, and the amount of adjustment (displacement) the band-brake 25 can accommodate.

[0066] As best shown in Fig. 26, the slave gear collar 280 defines an annular axial extension 282 which fits over a portion of the hub 284 without contacting the hub. This annular extension 282 defines an inner rim 286 and

- 30 an outer rim 288, between which is an engagement surface 290. The band contacts the engagement surface 290 between the inner rim and the outer rim. The slave gear collar 280 includes the same bearing system as previously described for one-way engagement with the
- outer surface of the axle housing 292. The proper positioning of the slave gear collar 280 is maintained on the axle housing by a large washer 294 which is tightly pressed against the outer surface of the slave gear collar by a nut 296 to keep the slave gear collar from becoming imbalanced. A second set of one-way bearings could be positioned between the annular extension 282 from the slave gear collar and the outer surface of the hub over which the slave gear collar annular extension is positioned.

45 [0067] As the drive train is actuated in the forward direction by the rider, the one-way bearing 298 between the slave gear collar 280 and the axle housing 292 engages to cause a direct drive relationship between the drive train and the flywheel, as in the previously de-

50 scribed embodiments. In the event a sufficient reverse force is applied to the slave gear collar through the drive train, the one-way bearing 298 releases and allows the slave gear collar to free-wheel subject to the frictional engagement of the slave gear collar and the belt 274.

55 The engagement surface 290 is in frictional engagement with the belt to create the "break free" force. The "break free" force is determined by the tightness of the belt around the engagement surface on the annular ex-

tension 282 of the slave gear collar. This "break free" force resists the free wheeling of the slave gear collar on the axle housing 292 and provides the beneficial pedal-through feature of traditional direct drive exercise bicycles. It also allows the drive train to free-wheel when a sufficient reverse force is applied to the drive train, likely through the pedals and cranks, to allow the drive train to be driven at a relatively lower RPM than the flywheel, depending on the gear ratio.

[0068] As the frictional brake material 276 wears down, the housing 268 is adjusted by tightening the screw 266 to move the housing, and thus tighten the belt 274 around the annular extension 282 of the slave gear collar 280 to maintain the desired frictional engagement, resulting in the desired "break free" force

[0069] Another alternative embodiment is shown in Figs. 27-29. In this embodiment, the slave gear collar 300 has the same structure as the previous embodiment described, and is held in engagement with the axle housing 302 in the same manner. A compression brake housing 304 is mounted in engagement with the flywheel 306 and includes means 308 for causing engagement of arcuate compression members 310 with the engagement surface 312 on the slave gear (sprocket) collar annular extension 314, between the inner and outer rims 316, 318. The arcuate compression members 310 have a hard backing 320 and a frictional clutch material 32(2 mated to their inner concave surface for engagement with the slave gear collar annular extension 314. The brake housing 304 includes means 308 for radially adjusting the compression of the compression members against the annular extension 314, such as set screws which are threadedly adjustable through the brake housing to engage the hard back surface 320 of the arcuate compression members 310 to press the frictional material 322 of the compression members against the engagement surface 312 of the annular extension. These means can be self-adjusting to accommodate wear of the friction material, such as by being springloaded set-screws. As the frictional clutch material wears down, the set screws 324 can be used to maintain the proper compression of the compression members 310 against the engagement surface 312, which creates the desired "break free" force.

[0070] This embodiment operates in the same manner to allow a break free clutch mechanism on the flywheel as the previously described embodiments. The brake housing 304 is held in rotational fixed orientation with the flywheel by a pin 326 positioned through a slot 328 in the brake housing. The movement of the pin in the slot allows for uneven wear of the compression members 310.

[0071] Another alternative embodiment is shown in Fig. 30. Only one side, the inner side 329 as shown, of the sprocket collar 330 is used to create a frictional engagement with an engagement flange 332 attached to the axle housing 334 at the hub 336 of the flywheel 338. The sprocket collar is positioned on a sheath 333

threadably engaging the axle housing 334 at the hub 336, with a one-way bearing 337 (or ratchet and pawl mechanism) positioned between the sprocket collar and the sheath 333 for the same purpose as disclosed above with many of the other embodiments. Clutch material 340 is positioned between the side 329 of the sprocket collar 330 and the engagement flange 332, and can be attached to either one, to create the frictional engagement therebetween. The engagement flange is move-

10 able along the axle housing of the hub to allow the friction force to be kept at a relatively constant level as the clutch material wears out. This self-adjustment, as described above, occurs when the spring 342, or other means, presses the engagement flange outwardly from

the hub to clamp the clutch material against the inner side 329 of the sprocket collar 330. The sprocket collar 330 is supported on the inner and outer sides by an inner 344 and outer 346 bearing, respectively. The inside edge 335 of the sheath forms the outer race for the inner
bearing 344, while the sprocket collar forms the inner

race for both the inner 344 and outer 346 bearings. The outer race 348, or cone, threadedly engages the outer end of the sheath 333 to hold the sprocket collar 330 in place and provide a thrust bearing against which the 25 spring 342 pushes.

[0072] It is contemplated that these free wheel clutch mechanism structures described herein could be mounted on the drive sprocket of the drive train, in addition to the slave sprocket of the drive train. It is also contemplated that a one-way bearing need not be used in all circumstances, in which case the clutch mechanism would be caused to slip if the break-free force threshold was reached in either the forward or rearward drive-train direction.

³⁵ [0073] Presently preferred embodiments of the present invention and many of its improvements have been described with a degree of particularity. The previous description is of preferred examples for implementing the invention, and the scope of the invention
⁴⁰ should not necessarily be limited by this description The scope of the present invention is defined by the scope of the following claims.

45 Claims

1. An exercise bicycle having a frame (80) including a seat (84) and handlebars (86), a high-inertia flywheel (44) having a hub (62) at a center of rotation, the flywheel being rotatably supported on the frame at the hub, the exercise bicycle having a drive train, including a drive sprocket (46), a crank arm (48) attached to and extending from the drive sprocket, and a pedal (50) attached to the crank arm, the drive train being rotatably supported by the frame, and a slave sprocket (54) fixed to the flywheel at the hub, with the drive relationship, the drive train driveable in

50

10

15

a forward and rearward directions to cause the flywheel to rotate, the exercise bicycle comprising:

a clutch (40) positioned in engagement with the slave sprocket and the hub creating a frictional engagement between the sprocket and the hub, and creating a break-free force; and wherein when said drive train is actuated in the forward direction, the slave sprocket and the hub move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the clutch mechanism slips between the slave sprocket and the hub, allowing the slave sprocket and the flywheel to move independently of one another.

2. An exercise bicycle as defined in claim 1, wherein:

the slave sprocket defines a sprocket collar (58) mounted on the hub and defines an engagement collar (130, 132, 312, 329, 330); a one-way bearing (66) mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently of the hub when the sprocket collar is driven in the

rearward direction; an engagement flange (120, 122, 322) fixedly mounted on the hub corresponding to the en- 30 gagement collar;

compression means (72, 73, 152, 200, 240, 242, 342) mounted on said flywheel to bias the flange and the collar towards one another;

a clutch material member (70, 158, 178, 186, *35* 210, 212, 244, 246, 340) positioned between said engagement flange and said collar, and clamped therebetween by the compression means to cause the engagement flange to move in conjunction with the sprocket collar, the *40* engagement creating a break-free force required to cause the sprocket collar to move independently of the engagement flange; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the engagement flange move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the engagement flange slips with respect to the collar, allowing the sprocket collar and the flywheel to move independently of one another.

3. An exercise bicycle as defined in claim 1, wherein:

the slave sprocket defines a sprocket collar (58) mounted on the hub and defines an inner (132) and outer (130) engagement collars; a one-way bearing (66) mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin freely on the hub when the sprocket collar is driven in the rearward direction;

an inner engagement flange fixedly mounted on the hub corresponding to the inner engagement collar (122), and an outer engagement flange (120) fixedly mounted on the hub corresponding to the outer engagement collar;

compression means (72, 73, 152, 200, 240, 242, 342) mounted on said flywheel to bias the inner flange and the inner collar towards one another, and to bias the outer flange and the outer collar towards one another;

a clutch material member (70, 158, 178, 186, 210, 212, 244, 246, 340) positioned between said outer engagement flange and said outer collar, and between said inner engagement flange and said inner collar, and clamped therebetween by the compression means to cause the inner and outer engagement flanges to move in conjunction with the sprocket collar, the engagement creating a break-free force required to cause the sprocket collar to move independently of inner and outer engagement flanges; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the inner and outer flanges move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the inner and outer engagement flanges slip with respect to the inner and outer collars, allowing the sprocket collar and the flywheel to move independently of one another.

- 4. An exercise bicycle as defined in claim 2, wherein said compression means is a belleville washer (200. 240, 242).
- 5. An exercise bicycle as defined in claim 2, wherein said compression means is a plurality of belleville washers (200, 240, 242).
- 6. An exercise bicycle as defined in claim 5, wherein said compression means is two belleville washers positioned back-to-back (240, 242).
- An exercise bicycle as defined in claim 2, wherein said compression means is an elastomeric material (73).

55 8. An exercise bicycle as defined in claim 3, wherein said compression means is a belleville washer (200, 240, 242).

45

25

- 9. An exercise bicycle as defined in claim 3, wherein said compression means is a plurality of belleville washers (200, 240, 242).
- 10. An exercise bicycle as defined in claim 8, wherein 5 said compression means is two belleville washers positioned back-to-back (240, 242).
- 11. An exercise bicycle as defined in claim 3, wherein said compression means is an elastomeric material 10 (73).
- 12. An exercise bicycle as defined in claim 1, wherein:

the slave sprocket defines a sprocket collar (58) mounted on the hub including an engagement collar (130,132);

a one-way bearing (66) mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently on the hub when the sprocket collar is driven in the rearward direction:

a band brake (260) fixedly mounted on the flywheel, the band brake having a belt (274) attached to a housing, the belt frictionally engaging the engagement collar which causes the flywheel to move in conjunction with the sprocket collar, and creating a break-free force required 30 to cause the belt to slip on the engagement collar allowing the sprocket collar to move independently of the flywheel; and wherein, when said drive train is actuated in the

forward direction, the sprocket collar and the 35 flywheel move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the band slips with respect to the engagement collar, allowing the sprocket collar and the flywheel to move in-40 dependently of one another.

13. An exercise bicycle as defined in claim 1, wherein:

the slave sprocket defines a sprocket collar (58) 45 mounted on the hub including an engagement collar (130, 132, 312, 329, 330):

a one-way (66) bearing mounted between the sprocket collar and the hub to allow the sprocket collar to drive the axle when the sprocket col-50 lar is driven in a forward direction, and to allow the sprocket collar to spin independently on the axle when the sprocket collar is driven in the rearward direction;

a compression brake (304) fixedly mounted on 55 the flywheel, the compression brake having an arcuate compression member (310) frictionally engaging the engagement collar which causes

the flywheel to move in conjunction with the sprocket collar, and creating a break-free force required to cause the arcuate compression member to slip on the engagement collar allowing the sprocket collar to move independently of the flywheel; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the flywheel move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the arcuate compression member slips with respect to the engagement collar, allowing the sprocket collar and the flywheel to move independently of one another.

- 14. The exercise bicycle as defined in claim 1, wherein said clutch is self-adjusting.
- 20 15. The exercise bicycle as defined in claim 1, wherein said frame comprises:

a front ground support (90);

a rear ground support (90);

a brace member (92) extending between said front and rear ground supports:

front forks (88) having a top end and a bottom end, and attached at the bottom end to said front ground support (90), and rotatably supporting the high-inertia flywheel 44;

a rear post (94) having a top member (102) and a bottom member (104), said top member attaching to said bottom member in a rear offset overlapping manner, said rear post defining a top end and a bottom end, and being attached at the bottom end to said brace member;

an articulated beam (96) attached to and extending from said top end of said front forks downwardly and rearwardly to a midpoint between said front forks and said rear post, then extending horizontally to said rear post at said intersection of said top and bottom members of said rear post:

a rear truss (107) extending from said top member of said rear post to said rear support;

a handlebar (86) attached at the top end of said front forks:

a seat (84) attached at the top end of said rear post:

a front area defined by the front forks (88), articulated beam (96), rear post 94 and brace member (92) forming a five-sided polygon; and a rear area defined by the rear post (94), rear truss (107), and brace member (92) forming a five-sided polygon.

16. A free-wheel clutch mechanism for an exercise bicycle (42), the bicycle having a frame (80), and a

10

25

high-inertia flywheel (44) having a hub (62) at a center of rotation, the flywheel being rotatably supported on the frame at the hub, a drive train supported on the frame and engaged with the flywheel and driveable in a forward and rearward directions to cause the flywheel to rotate, the clutch mechanism comprising:

a slave sprocket (54) fixed to the flywheel at the hub;

a clutch (40) positioned in engagement with the slave sprocket and the hub creating a frictional engagement between the sprocket and the hub, and creating a break-free force; and

wherein when said drive train is actuated ¹⁵ in the forward direction, the slave sprocket and the hub move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the clutch mechanism slips between the slave sprocket and the ²⁰ hub, allowing the slave sprocket and the flywheel to move independently of one another.

17. A clutch mechanism as defined in claim 16, wherein:

the slave sprocket defines a sprocket collar (58) mounted on the hub and defines an engagement collar (130, 132, 312, 329, 330);

a one-way bearing (66) mounted between the ³⁰ sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently of the hub when the sprocket collar is driven in the ³⁵ rearward direction:

an engagement flange (120, 122, 322) fixedly mounted on the hub corresponding to the engagement collar;

compression means (72, 73, 152, 200, 240, 40 242, 342) mounted on said flywheel to bias the flange and the collar towards one another;

a clutch material member (70, 158, 178, 186, 210, 212, 244, 246, 340) positioned between said engagement flange and said collar, and clamped therebetween by the compression means to cause the engagement flange to move in conjunction with the sprocket collar, the engagement creating a break-free force required to cause the sprocket collar to move independently of the engagement flange; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the engagement flange move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the engagement flange slips with respect to the collar, allowing the sprocket collar and the flywheel to move independently of one another.

18. A clutch mechanism as defined in claim 16, wherein:

> the slave sprocket defines a sprocket collar (58) mounted on the hub and defines an inner (132, 329) and outer (130, 330) engagement collars; a one-way (66) bearing mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin freely on the hub when the sprocket collar is driven in the rearward direction;

> an inner engagement flange (122) fixedly mounted on the hub corresponding to the inner engagement collar, and an outer engagement flange (122) fixedly mounted on the hub corresponding to the outer engagement collar;

> compression means (72, 73, 152, 200, 240, 242, 342) mounted on said flywheel to bias the inner flange and the inner collar towards one another, and to bias the outer flange and the outer collar towards one another;

a clutch material member (70, 158, 178, 186, 210, 212, 244, 246, 340) positioned between said outer engagement flange and said outer collar, and between said inner engagement flange and said inner collar, and clamped therebetween by the compression means to cause the inner and outer engagement flanges to move in conjunction with the sprocket collar, the engagement creating a break-free force required to cause the sprocket collar to move independently of inner and outer engagement flanges; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the inner and outer flanges move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the inner and outer engagement flanges slip with respect to the inner and outer collars, allowing the sprocket collar and the flywheel to move independently of one another.

- **19.** A clutch mechanism as defined in claim 17, wherein said compression means is a belleville washer (200, 240, 242).
- **20.** A clutch mechanism as defined in claim 17, wherein said compression means is a plurality of belleville washers (200, 240, 242).
- 21. A clutch mechanism as defined in claim 20, wherein said compression means is two belleville washers (240, 242) positioned back-to-back.

1 /

45

50

20

25

30

- 22. A clutch mechanism as defined in claim 17 wherein said compression means is an elastomeric material (73).
- 5 23. A clutch mechanism as defined in claim 18, wherein said compression means is a belleville washer (200, 240, 242).
- 24. A clutch mechanism as defined in claim 18, wherein said compression means is a plurality of belleville 10 washers (200, 240, 242).
- 25. A clutch mechanism as defined in claim 23, wherein said compression means is two belleville washers positioned back-to-back (240, 242).
- 26. A clutch mechanism as defined in claim 18. wherein said compression means is an elastomeric material (73).
- 27. A clutch mechanism as defined in claim 16. wherein-

the slave sprocket defines a sprocket collar (58) mounted on the hub including an engagement collar (130, 132, 312, 329, 330);

a one-way (66) bearing mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently on the hub when the sprocket collar is driven in the rearward direction;

a band brake (260) fixedly mounted on the flywheel, the band brake having a belt (274) at-35 tached to a housing (260), the belt frictionally engaging the engagement collar which causes the flywheel to move in conjunction with the sprocket collar, and creating a break-free force required to cause the belt to slip on the engage-40 ment collar allowing the sprocket collar to move independently of the flywheel; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the flywheel move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the band slips with respect to the engagement collar, allowing the sprocket collar and the flywheel to move independently of one another.

28. A clutch mechanism as defined in claim 16, wherein:

> 55 the slave sprocket defines a sprocket collar (58) mounted on the hub including an engagement collar (130, 132, 312, 329, 330); a one-way bearing (66) mounted between the

sprocket collar and the hub to allow the sprocket collar to drive the axle when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently on the axle when the sprocket collar is driven in the rearward direction;

a compression brake (304) fixedly mounted on the flywheel, the compression brake having an arcuate compression member (310) frictionally engaging the engagement collar which causes the flywheel to move in conjunction with the sprocket collar, and creating a break-free force required to cause the arcuate compression member to slip on the engagement collar allowing the sprocket collar to move independently of the flywheel; and

wherein, when said drive train is actuated in the forward direction, the sprocket collar and the flywheel move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force. the arcuate compression member slips with respect to the engagement collar, allowing the sprocket collar and the flywheel to move independently of one another.

Patentansprüche

Ein Übungsfahrrad, aufweisend einen Rahmen (80) 1. mit einem Sitz (84) und einer Lenkstange (86), ein Hochträgheits-Schwungrad (44) mit einer Nabe (62) an einem Rotationszentrum, wobei das Schwungrad an dem Rahmen bei der Nabe drehbar gelagert ist, wobei das Übungsfahrrad eine Antriebsausrüstung mit einem Antriebszahnkranz (46), einem Kurbelarm (48), welcher an dem Antriebszahnkranz angebracht ist und sich von dem Antriebszahnkranz aus erstreckt, und einem an dem Kurbelarm angebrachten Pedal (50), wobei die Antriebsausrüstung durch den Rahmen drehbar gelagert ist, sowie einen Nebenzahnkranz (54) aufweist, welcher an dem Schwungrad bei der Nabe befestigt ist, wobei der Antriebszahnkranz und der 45 Nebenzahnkranz in einer Direktantriebsbeziehung verbunden sind und wobei die Antriebsausrüstung in einer Vorwärtsrichtung und in einer Rückwärtsrichtung antreibbar ist, um das Schwungrad zu veranlassen, sich zu drehen, wobei das Übungsfahrrad aufweist:

> eine Kupplung (40), welche in Eingriff mit dem Nebenzahnkranz und der Nabe positioniert ist, wobei ein Reibungseingriff zwischen dem Zahnkranz und der Nabe erzeugt wird und wobei eine unterbrechungsfreie Kraft erzeugt wird; und

wobei sich, wenn die genannte Antriebsausrü-

10

stung in der Vorwärtsrichtung betätigt wird, der Nebenzahnkranz und die Nabe zusammen bewegen, und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, der Kupplungsmechanismus zwischen dem Nebenzahnkranz und der Nabe gleitet, wodurch es dem Nebenzahnkranz und dem Schwungrad erlaubt wird, sich unabhängig voneinander zu bewegen.

2. Ein Übungsfahrrad, wie in Anspruch 1 definiert, bei welchem:

der Nebenzahnkranz einen Zahnkranz-Ring ¹⁵ (58) definiert, der an der Nabe angebracht ist und einen Eingriffsring (130, 132, 312, 329, 330) definiert;

ein Einweglager (66) zwischen dem Zahn-²⁰ kranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Nabe anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich unab-²⁵ hängig von der Nabe zu drehen, wenn der Zahnkranz-Ring in der Rückwärtsrichtung angetrieben wird;

ein Eingriffsflansch (120, 122, 322) an der Na- 30 be entsprechend dem Eingriffs-Ring fest angebracht ist;

eine Kompressionseinrichtung (72, 73, 152, 200, 240, 242, 342) an dem genannten ³⁵ Schwungrad angebracht ist, um den Flansch und den Ring in Richtung zueinander hin vorzuspannen;

40 ein Kupplungsmaterialelement (70, 158, 178, 186, 210, 244, 246, 340) vorgesehen ist, das zwischen dem genannten Eingriffsflansch und dem genannten Ring positioniert ist und dazwischen durch die Kompressionseinrichtung befestigt ist, um den Eingriffsflansch dazu zu ver-45 anlassen, sich in Verbindung mit dem Zahnkranz-Ring zu bewegen, wobei der Eingriff eine unterbrechungsfreie Kraft erzeugt, die erforderlich ist, um den Zahnkranz-Ring dazu zu veranlassen, sich unabhängig von dem Ein-50 griffsflansch zu bewegen: und wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und der Eingriffsflansch zusammen bewegen, und, wenn die Antriebsaus-55 rüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet,

der Eingriffsflansch in Bezug auf den Ring glei-

tet, wodurch es dem Zahnkranz-Ring und dem Schwungrad erlaubt wird, sich unabhängig voneinander zu bewegen.

 Ein Übungsfahrrad, wie in Anspruch 1 definiert, bei welchem:

> der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist und der einen inneren Eingriffsring (132) und einen äußeren Eingriffsring (130) definiert;

> ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Nabe anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich frei an der Nabe zu drehen, wenn der Zahnkranz-Ring in der Rückwärtsrichtung angetrieben wird;

ein innerer Eingriffsflansch vorgesehen ist, welcher an der Nabe entsprechend dem inneren Eingriffsring (122) fest angebracht ist, und ein äußerer Eingriffsflansch (120) vorgesehen ist, der an der Nabe entsprechend dem äußeren Eingriffsring fest angebracht ist;

eine Kompressionseinrichtung (72, 73 152, 200, 240, 242, 342) an dem genannten Schwungrad angebracht ist, um den inneren Flansch und den inneren Ring in Richtung zueinander hin vorzuspannen und um den äußeren Flansch und den äußeren Ring in Richtung zueinander hin vorzuspannen;

ein Kupplungsmaterialelement (70, 158, 178, 186, 210, 212, 244, 246, 340) vorgesehen ist. das zwischen dem genannten äußeren Eingriffsflansch un dem genannten äußeren Ring und zwischen dem genannten inneren Eingriffsflansch und dem genannten inneren Ring positioniert ist und dazwischen durch die Kompressionseinrichtung befestigt ist, um den inneren Eingriffsflansch und den äußeren Eingriffsflansch dazu zu veranlassen, sich in Verbindung mit dem Zahnkranz-Ring zu bewegen, wobei der Eingriff eine unterbrechungsfreie Kraft erzeugt, welche erforderlich ist, um den Zahnkranz-Ring dazu zu veranlassen, sich unabhängig von dem inneren Eingriffsflansch und dem äußeren Eingriffsflansch zu bewegen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und der innere Flansch und der äußere Flansch zusammen bewegen, und, wenn die An-

30

35

40

triebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, der innere Eingriffsflansch und der äußere Eingriffsflansch in Bezug auf den inneren Ring und den äu-Beren Ring gleiten, um es dem Zahnkranz-Ring und dem Schwungrad zu erlauben, sich unabhängig voneinander zu bewegen.

- Ein Übungsfahrrad, wie in Anspruch 2 definiert, bei welchem die genannte Kompressionseinrichtung ¹⁰ ein Belleville-Dichtungsring (200, 240, 242) ist.
- Ein Übungsfahrrad, wie in Anspruch 2 definiert, bei welchem die genannte Kompressionseinrichtung eine Mehrzahl von Belleville-Dichtungsringen (200, 15 240, 242) ist.
- Ein Übungsfahrrad, wie in Anspruch 5 definiert, bei welchem die genannte Kompressionseinrichtung zwei Belleville-Dichtungsringe (240 242) ist, die 20 Rücken an Rücken positioniert sind.
- Ein Übungsfahrrad, wie in Anspruch 2 definiert, bei welchem die genannte Kompressionseinrichtung ein elastomeres Material (73) ist.
- 8. Ein Übungsfahrrad, wie in Anspruch 3 definiert, bei welchem die genannte Kompressionseinrichtung ein Belleville-Dichtungsring (200, 240, 242) ist.
- Ein Übungsfahrrad, wie in Anspruch 3 definiert, bei welchem die genannte Kompressionseinrichtung eine Mehrzahl von Belleville-Dichtungsringen (200, 240, 242) ist.
- Ein Übungsfahrrad, wie in Anspruch 8 definiert, bei welchem die genannte Kompressionseinrichtung zwei Belleville-Dichtungsringe (240, 242) ist, welche Rücken an Rücken positioniert sind.
- **11.** Ein Übungsfahrrad, wie in Anspruch 3 definiert, bei welchem die genannte Kompressionseinrichtung ein elastomeres Material (73) ist.
- **12.** Ein Übungsfahrrad, wie in Anspruch 1 definiert, bei ⁴⁵ welchem:

der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist, welche einen Eingriffsring (130, 132) aufweist; 50 ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Nabe anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben

wird, und um es dem Zahnkranz-Ring zu erlauben, sich unabhängig von der Nabe zu drehen, wenn der Zahnkranz- Ring in der Rückwärtsrichtung angetrieben wird;

eine fest an dem Schwungrad angebrachte Bandbremse (260) vorgesehen ist, wobei diese Bandbremse einen Riemen (274) aufweist, der an einem Gehäuse angebracht ist, wobei der Riemen in reibschlüssigen Eingriff mit dem Eingriffsring kommt, welcher das Schwungrad dazu veranlaßt, sich in Verbindung mit dem Zahnkranz-Ring zu bewegen, und wobei der Riemen eine unterbrechungsfreie Kraft erzeugt, die erforderlich ist, um den Riemen dazu zu veranlassen, an dem Eingriffsring zu gleiten, um es dem Zahnkranz-Ring zu erlauben, sich unabhängig von dem Schwungrad zu bewegen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und das Schwungrad sich zusammen bewegen, und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, das Band in Bezug auf den Eingriffsring gleitet, um es dem Zahnkranz-Ring und dem Schwungrad zu erlauben, sich unabhängig voneinander zu bewegen.

- 13. Ein Übungsfahrrad, wie in Anspruch 1 definiert, bei welchem:
 - der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist, welche einen Eingriffsring (130, 132, 312, 329, 330) aufweist;

ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Achse anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich unabhängig an der Achse zu drehen, wenn der Zahnkranz- Ring in der Rückwärtsrichtung angetrieben wird;

eine an dem Schwungrad fest angebrachte Kompressionsbremse (304) vorgesehen ist, wobei diese Kompressionsbremse ein gekrümmtes Kompressionselement (310) aufweist, das mit dem Eingriffsring reibschlüssig in Eingriff kommt, welcher das Schwungrad dazu veranlaßt, sich in Verbindung mit dem Zahnkranz- Ring zu bewegen, wobei das gekrümmte Kompressionselement eine unterbrechungsfreie Kraft erzeugt, die erforderlich ist, um das gekrümmte Kompressionselement dazu zu veranlassen, an dem Eingriffsring zu gleiten, um es dem Zahnkranz-Ring zu erlauben, sich unabhängig von dem Schwungrad zu bewe-

25

30

45

gen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und das Schwungrad zusammen bewe-5 gen, und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, das gekrümmte Kompressionselement in Bezug auf den Eingriffsring gleitet, wobei es dem Zahnkranz-Ring und dem Schwung-10 rad erlaubt wird, sich unabhängig voneinander zu bewegen.

33

- 14. Ein Übungsfahrrad, wie in Anspruch 1 definiert, bei welchem die genannte Kupplung selbsteinstellend 15 ist.
- 15. Ein Übungsfahrrad, wie in Anspruch 1 definiert,

bei dem der Rahmen aufweist:

ein vorderes Bodentragteil (90);

ein hinteres Bodentragteil (90);

ein Verbindungsstrebenelement (92), das sich zwischen dem genannten vorderen Bodentragteil und dem genannten hinteren Bodentragteil erstreckt;

eine Vordergabel (88) mit einem oberen Ende und einem unteren Ende, wobei diese Vordergabel an dem unteren Ende an dem genannten vorderen Bodentragteil (90) angebracht ist und das Hochträgheits-Schwungrad (44) drehbar 35 lagert;

eine hintere Stütze (94) mit einem oberen Element (102) und einem unteren Element (104), wobei das genannte obere Element an dem ge-40 nannten unteren Element in einer nach hinten versetzten, überlappenden Art angebracht ist, und wobei die genannte hintere Stütze ein oberes Ende und ein unteres Ende definiert und an dem unteren Ende an dem genannten Verbindungsstrebenelement angebracht ist;

eine gelenkig angebrachte Verbindungsstange (96), die an dem genannten oberen Ende der genannten Vordergabel angebracht ist und sich 50 von dem genannten oberen Ende der genannten Vordergabel nach abwärts und nach rückwärts zu einem mittleren Punkt zwischen der genannten Vordergabel und der genannten hinteren Stütze erstreckt und sich sodann hori-55 zontal zu der genannten hinteren Stütze an der genannten Überkreuzung des genannten oberen Elements und des genannten unteren Elements der genannten hinteren Stütze erstreckt;

eine hintere Abstützstange (107), die sich von dem genannten oberen Element der genannten hinteren Stütze zu dem genannten hinteren Tragteil erstreckt;

eine Lenkstange (86), die an dem oberen Ende der genannten Vordergabel angebracht ist;

einen Sitz (84), der an dem oberen Ende der genannten hinteren Stütze angebracht ist;

einen vorderen Bereich, welcher durch die Vordergabel (88), die gelenkig angebrachte Verbindungsstange (96), die hintere Stütze (94) und das Verbindungsstrebenelement (92) unter Bildung eines fünfseitigen Polygons definiert ist; und

einen hinteren Bereich, welcher durch die hintere Stütze (94), die hintere Abstützstange (107) und das Verbindungsstrebenelement (92) unter Bildung eines fünfseitigen Polygons definiert ist.

16. Ein Freilauf-Kupplungsmechanismus für ein Übungsfahrrad (42), wobei das Fahrrad einen Rahmen (80) und ein Hochträgheits-Schwungrad (44) mit einer Nabe (62) an einem Rotationszentrum aufweist, wobei das Schwungrad an dem Rahmen bei der Nabe drehbar gelagert ist und wobei eine Antriebsausrüstung vorgesehen ist, die an dem Rahmen getragen ist und mit dem Schwungrad in Eingriff kommt und in einer Vorwärtsrichtung und in einer Rückwärtsrichtung antreibbar ist, um das Schwungrad dazu zu veranlassen, sich zu drehen, wobei der Kupplungsmechanismus aufweist:

einen Nebenzahnkranz (54), der an dem Schwungrad an der Nabe befestigt ist:

> eine in Eingriff mit dem Nebenzahnkranz und der Nabe positionierte Kupplung (40), welche einen Reibungseingriff zwischen dem Zahnkranz und der Nabe erzeugt und eine unterbrechungsfreie Kraft erzeugt; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Nebenzahnkranz und die Nabe zusammen bewegen und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, der Kupplungsmechanismus zwischen dem Nebenzahnkranz und der Nabe geleitet, wodurch es dem Nebenzahnkranz und dem Schwungrad erlaubt wird, sich unabhängig von einander zu bewegen.

der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist ⁵ und einen Eingriffsring (130, 132, 312, 329, 330) definiert;

ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Nabe anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich unabhängig von der Nabe zu ¹⁵ drehen, wenn der Zahnkranz- Ring in der Rückwärtsrichtung angetrieben wird;

ein Eingriffsflansch (120, 122, 322) vorgesehen ist, welcher an der Nabe entsprechend dem ²⁰ Eingriffsring fest angebracht ist;

eine Kompressionseinrichtung (72, 73, 152, 200, 240, 242, 342) vorgesehen ist, die an dem genannten Schwungrad angebracht ist, um ²⁵ den Flansch und den Ring in Richtung zueinander hin vorzuspannen;

ein Kupplungsmaterialelement (70, 158, 178, 186, 210, 212, 244, 246, 340) vorgesehen ist, das zwischen dem genannten Eingriffsflansch und dem genannten Ring positioniert ist und dazwischen durch die Kompressionseinrichtung befestigt ist, um den Ein- griffsflansch dazu zu veranlassen, sich in Verbindung mit dem Zahnkranz-Ring zu bewegen, wobei der Eingriff eine unterbrechungsfreie Kraft erzeugt, die erforderlich ist, um den Zahnkranz-Ring dazu zu veranlassen, sich unabhängig von dem Eingriffsflansch zu bewegen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und der Eingriffsflansch zusammen bewegen, und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, der Angriffsflansch in Bezug auf den Ring gleitet, um es dem Zahnkranz-Ring und dem Schwungrad zu erlauben, sich unabhängig voneinander zu bewegen.

18. Ein Kupplungsmechanismus, wie in Anspruch 16 definiert, bei welchem:

der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist und einen inneren Eingriffsring (132, 329) und einen äußeren Eingriffsring (130, 330) definiert; ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Nabe anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich frei an der Nabe zu drehen, wenn der Zahnkranz-Ring in der Rückwärtsrichtung angetrieben wird;

ein innerer Eingriffsflansch (122) vorgesehen ist, der an der Nabe entsprechend dem inneren Eingriffsring fest angebracht ist, und ein äußerer Eingriffsflansch (122) vorgesehen ist, der an der Nabe entsprechend dem äußeren Eingriffsring fest angebracht ist;

eine Kompressionseinrichtung (72, 73, 152, 200, 240, 242, 342) vorgesehen ist, die an dem genannten Schwungrad angebracht ist, um den inneren Flansch und den inneren Ring in Richtung zueinander hin vorzuspannen und um den äußeren Flansch und den äußeren Ring in Richtung zueinander hin vorzuspannen;

ein Kupplungsmaterialelement (70. 158, 178, 186, 210, 212, 244, 246, 340) vorgesehen ist, das zwischen dem genannten äußeren Eingriffsflansch und dem genannten äußeren Ring und zwischen dem genannten inneren Eingriffsflansch und dem genannten inneren Ring positioniert ist und dazwischen durch die Kompressionseinrichtung befestigt ist, um den inneren Eingriffsflansch und den äußeren Eingriffsflansch dazu zu veranlassen, sich in Verbindung mit dem Zahnkranz-Ring zu bewegen. wobei der Eingriff eine unterbrechungsfreie Kraft erzeugt, die erforderlich ist, um den Zahnkranz-Ring dazu zu veranlassen, sich unabhängig von dem inneren Eingriffsflansch und dem äußeren Eingriffsflansch zu bewegen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und der innere Flansch und der äußere Flansch zusammen bewegen, und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, der innere Eingriffsflansch und der äußere Eingriffsflansch in Bezug auf den inneren Ring und den äu-Beren Ring gleiten, um es dem Zahnkranz-Ring und dem Schwungrad zu erlauben, sich unabhängig voneinander zu bewegen.

19. Ein Kupplungsmechanismus, wie in Anspruch 17 definiert, bei welchem die genannte Kompressionseinrichtung ein Belleville-Dichtungsring (200, 240, 242) ist.

36

45

50

10

15

20

25

30

- 20. Ein Kupplungsmechanismus, wie in Anspruch 17 definiert, bei welchem die genannte Kompressionseinrichtung eine Mehrzahl von Belleville- Dichtungsringen (200, 240, 242) ist.
- Ein Kupplungsmechanismus, wie in Anspruch 20 definiert, bei welchem die genannte Kompressionseinrichtung zwei Belleville-Dichtungsringe (240, 242) ist, welche Rücken an Rücken positioniert sind.
- 22. Ein Kupplungsmechanismus, wie in Anspruch 17 definiert, bei welchem die genannte Kompressionseinrichtung ein elastomeres Material (73) ist.
- 23. Ein Kupplungsmechanismus, wie in Anspruch 18 definiert. bei welchem die genannte Kompressionseinrichtung ein Belleville-Dichtungsring (200, 240, 242) ist.
- 24. Ein Kupplungsmechanismus, wie in Anspruch 18 definiert, bei welchem die genannte Kompressionseinrichtung eine Mehrzahl von Belleville- Dichtungsringen (200, 240, 242) ist.
- Ein Kupplungsmechanismus, wie in Anspruch 23 definiert, bei welchem die genannte Kompressionseinrichtung zwei Belleville-Dichtungsringe (240, 242) ist, welche Rücken an Rücken positioniert ist.
- 26. Ein Kupplungsmechanismus, wie in Anspruch 18 definiert, bei welchem die genannte Kompressionseinrichtung ein elastomeres Material (73) ist.
- 27. Ein Kupplungsmechanismus, wie in Anspruch 16 35 definiert, bei welchem:

der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist, welche einen Eingriffsring (130, 132, 312, 329, 40 330) aufweist;

ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Nabe anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich unabhängig an der Nabe zu drehen, wenn der Zahnkranz- Ring in der Rückwärtsrichtung angetrieben wird;

eine Bandbremse (260) vorgesehen ist, welche an dem Schwungrad fest angebracht ist, wobei die Bandbremse einen Riemen (247) aufweist, der an einem Gehäuse (260) angebracht ist, und wobei der Riemen an dem Eingriffsring reibschlüssig angreift, welcher verursacht, daß sich das Schwungrad in Verbindung mit dem Zahnkranz-Ring bewegt, und eine unterbrechungsfreie Kraft erzeugt, die erforderlich ist, um zu verursachen, daß der Riemen an dem Eingriffsring gleitet, um es dem Zahnkranz-Ring zu erlauben, sich unabhängig von dem Schwungrad zu bewegen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und das Schwungrad zusammen bewegen, und, wenn die Antriebsausrüstung in Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, das Band in Bezug auf den Eingriffsring gleitet, um es dem Zahnkranz-Ring und dem Schwungrad zu erlauben, sich unabhängig voneinander zu bewegen.

28. Ein Kupplungsmechanismus, wie in Anspruch 16 definiert, bei welchem:

der Nebenzahnkranz einen Zahnkranz-Ring (58) definiert, der an der Nabe angebracht ist, welche einen Eingriffsring (130, 132, 312, 329, 330) aufweist;

ein Einweglager (66) vorgesehen ist, das zwischen dem Zahnkranz-Ring und der Nabe angebracht ist, um es dem Zahnkranz-Ring zu erlauben, die Achse anzutreiben, wenn der Zahnkranz-Ring in einer Vorwärtsrichtung angetrieben wird, und um es dem Zahnkranz-Ring zu erlauben, sich unabhängig an der Achse zu drehen, wenn der Zahnkranz-Ring in der Rückwärtsrichtung angetrieben wird;

eine Kompressionsbremse (304) vorgesehen ist, welche an dem Schwungrad fest angebracht ist, wobei die Kompressionsbremse ein gekrümmtes Kompressionselement (310) aufweist, welches an dem Eingriffsring reibschlüssig angreift, welcher das Schwungrad dazu veranlaßt, sich in Verbindung mit dem Zahnkranz-Ring zu bewegen, und welches eine unter- brechungsfreie Kraft erzeugt, die erforderlich ist, um das gekrümmte Kompressionselement dazu zu veranlassen, an dem Eingriffsring zu gleiten, um es dem Zahnkranz-Ring zu erlauben, sich unabhängig von dem Schwungrad zu bewegen; und

wobei sich, wenn die genannte Antriebsausrüstung in der Vorwärtsrichtung betätigt wird, der Zahnkranz-Ring und das Schwungrad zusammen bewegen, und, wenn die Antriebsausrüstung in der Rückwärtsrichtung betätigt wird und die unterbrechungsfreie Kraft überwindet, das gekrümmte Kompressionselement in Bezug auf den Eingriffsring gleitet,

30

40

um es dem Zahnkranz-Ring und dem Schwungrad zu erlauben, sich unabhängig voneinander zu bewegen.

Revendications

- Vélo d'exercice comportant: un cadre (80), compor-1. tant une selle (84) et un guidon (86); un volant (44) à inertie élevée ayant un moyeu (62) au niveau d'un 10 axe de rotation, le volant étant supporté de manière rotative sur le cadre au niveau du moyeu; le vélo d'exercice avant un train d'entraînement, comportant une roué dentée d'entraînement(46). un bras de manivelle (48) fixé sur la roue dentée d'entraî-15 nement et s'étendant à partir de celle-ci, et une pédale (50) fixée sur le bras de manivelle, le train d'entraînement étant supporté de manière rotative par le cadre et une roue dentée esclave (54) fixée sur le volant au niveau du moyeu, les roues dentées 20 d'entraînement et esclave étant reliées dans une relation d'entraînement direct, le train d'entraînement pouvant être entraîné dans des directions vers l'avant et vers l'arrière pour entraîner le volant à 25 tourner; le vélo d'exercice comportant :
 - un embravage (40) positionné en prise avec la roue dentée esclave et le moyeu créant un contact frictionnel entre la roue dentée et le moyeu, et créant une force exempte de rupture ; et
 - dans lequel lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la roue dentée esclave et le moyeu se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et 35 surmonte la force exempte de rupture, le mécanisme d'embrayage glisse entre la roue dentée esclave et le moyeu, permettant à la roue dentée esclave et au volant de se déplacer indépendamment l'un de l'autre.
- 2. Vélo d'exercice selon la revendication 1, dans lequel:

45 la roue dentée esclave définit une bague (58) de roue dentée montée sur le moyeu et définit une bague de contact (130,132,312,329,330); un palier unidirectionnel (66) est monté entre la baque de roue dentée et le moyeu, pour per-50 mettre à la bague de roue dentée d'entraîner le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'avant. et pour permettre à la bague de roue dentée de tourner indépendamment du moyeu lorsque la bague 55 de roue dentée est entraînée dans la direction vers l'arrière :

un rebord de contact (120, 122, 322) est monté de manière fixe sur le moyeu en correspondan40

ce avec la baque de contact;

des moyens de compression (72,73,152,200, 240,242, 342) sont montés sur ledit volant pour contraindre le rebord et la bague l'un vers l'autre:

un élément en matériau d'embrayage (70,158, 178,186, 210,212,244,246,340) est positionné entre ledit rebord de contact et ladite bague, et est serré entre ceux-ci par les moyens de compression pour entraîner le rebord de contact à se déplacer en liaison avec la bague de roue dentée, le contact créant une force exempte de rupture nécessaire pour entraîner la bague de roue dentée à se déplacer indépendamment du rebord de contact; et

dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et le rebord de contact se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture. le rebord de contact glisse par rapport à la baque, permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

- 3. Vélo d'exercice selon la revendication 1, dans lequel :
 - la roue dentée esclave définit une bague (58) de roue dentée montée sur le moyeu et définit des bagues de contact intérieure (132) et extérieure (130);

un palier unidirectionnel (66) est monté entre la baque de roue dentée et le moyeu pour permettre à la bague de roue dentée d'entraîner le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'avant, et pour permettre à la bague de roue dentée de tourner librement sur le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'arrière ;

un rebord de contact intérieur est monté de manière fixe sur le moyeu en correspondance avec la bague de contact intérieure (122), et un rebord de contact extérieur (120) est monté de manière fixe sur le moyeu en correspondance avec la baque de contact extérieure;

des moyens de compression (72,73,152,200, 240,242, 342) sont montés sur ledit volant pour contraindre le rebord intérieur et la bague intérieure l'un vers l'autre, et pour contraindre le rebord extérieur et la bague extérieure l'un vers l'autre:

un élément en matériau d'embrayage (70,158, 178.186.210,212,244,246,340) est positionné entre ledit rebord de contact extérieur et ladite bague extérieure, et entre ledit rebord de con-

10

15

20

25

40

45

tact intérieur et ladite bague intérieure, et est serré entre ceux-ci par les moyens de compression pour entraîner les rebords de contact intérieur et extérieur à se déplacer en liaison avec la bague de roue dentée, le contact créant une force exempte de rupture nécessaire pour entraîner la bague de roue dentée à se déplacer indépendamment des rebords de contact intérieur et extérieur ; et

dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et les rebords intérieur et extérieur se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, les rebords de contact intérieur et extérieur glissent par rapport aux bagues intérieure et extérieure, permettant aux bagues de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

- Vélo d'exercice selon la revendication 2, dans lequel les moyens de compression sont une rondelle Belleville (200,240,242).
- 5. Vélo d'exercice selon la revendication 2, dans lequel lesdits moyens de compression sont plusieurs rondelles Belleville (200,240,242).
- Vélo d'exercice selon la revendication 5, dans lequel lesdits moyens de compression sont deux rondelles Belleville positionnées dos à dos (240,242).
- Vélo d'exercice selon la revendication 2, dans lequel lesdits moyens de compression sont un matériau en élastomère (73).
- Vélo d'exercice selon la revendication 3, dans lequel lesdits moyens de compression sont une rondelle Belleville (200,240,242).
- 9. Vélo d'exercice selon la revendication 3, dans lequel lesdits moyens de compression sont plusieurs rondelles Belleville (200,240,242).
- Vélo d'exercice selon la revendication 8, dans lequel lesdits moyens de compression sont deux rondelles Belleville positionnées dos à dos (240,242).
- Vélo d'exercice selon la revendication 3, dans lequel lesdits moyens de compression sont un matériau en élastomère (73).
- 12. Vélo d'exercice selon la revendication 1, dans lequel : 55

la roue denté esclave définit une bague (58) de roue dentée montée sur le moyeu comportant

une bague de contact (130,132);

un palier unidirectionnel (66) monté entre la bague de roue dentée et le moyeu pour permettre à la bague de roue dentée d'entraîner le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'avant, et pour permettre à la bague de roue dentée de tourner indépendamment sur le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'arrière ;

un frein à bande (260) est monté de manière fixe sur le volant, le frein à bande ayant une courroie (274) fixée sur le boîtier, la courroie étant en contact frictionnel avec la bague de contact, ce qui entraîne le volant à se déplacer en liaison avec la bague de roue dentée, et créant une force exempte de rupture nécessaire pour entraîner la courroie à glisser sur la bague de contact en permettant à la bague de roue dentée de se déplacer indépendamment du volant ; et

dans lequel, lorsque ledit train est actionné dans la direction vers l'avant, la bague de roue dentée et le volant se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, la bande glissepar rapport à la bague de contact, permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

13. Vélo d'exercice selon la revendication 1, dans lequel :

la roue denté esclave définit une bague (58) de roue dentée montée sur le moyeu comportant une bague de contact (130,132,312,329,330); un palier unidirectionnel (66) monté entre la bague de roue dentée et le moyeu pour permettre à la bague de roue dentée d'entraîner l'axe lorsque la bague de roue dentée est entraînée dans la direction vers l'avant, et pour permettre à la bague de roue dentée de tourner indépendamment sur l'axe lorsque la bague de roue dentée est entraînée dans la direction vers l'arrière ;

un frein à compression (304) est monté de manière fixe sur le volant, le frein à compression ayant un élément de compression en arc de cercle venant en contact de manière frictionnelle avec la bague de contact, ce qui entraîne le volant à se déplacer en liaison avec la bague de roue dentée, et crée une force exempte de rupture nécessaire pour entraîner l'élément de compression en arc de cercle à glisser sur la bague de contact en permettant à la bague de roue dentée de se déplacer indépendamment

15

20

du volant ; et

dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et le volant se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, l'élément de compression en arc de cercle glisse par rapport à la bague de con-10 tact, permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

- 14. Mécanisme d'embrayage selon la revendication 1, dans lequel ledit embrayage est autoréglable.
- 15. Vélo d'exercice selon la revendication 1, dans lequel ledit cadre comporte:

un support avant (90);

un support arrière (90); un élément d'entretoise (92) s'étendant entre lesdits supports de sol avant et arrière; des fourches avant (88) ayant une extrémité supérieure et une extrémité inférieure, et fixées 25 au niveau de l'extrémité inférieure sur ledit support de sol avant (90), et supportant de manière rotative un volant (44) à inertie élevée; un montant arrière (94) ayant un élément supé-30 rieur (102) et un élément inférieur (104), ledit élément supérieur étant relié audit élément inférieur d'une manière recouvrante et décalée vers l'arrière, ledit montant arrière définissant une extrémité supérieure et une extrémité inté-35 rieure, et étant fixé au niveau de l'extrémité inférieure audit élément d'entretoise:

une poutre articulée (96) fixée sur ladite extrémité supérieure desdites fourches avant et s'étendant vers le bas et vers l'arrière vers un point médian entre les deux fourches avant et 40 ledit montant arrière, et s'étendant ensuite horizontalement vers ledit montant arrière au niveau dudit tronçon intermédiaire desdits éléments supérieur et inférieur dudit montant arrière⁻

une traverse arrière (107) s'étendant à partir dudit élément supérieur dudit montant arrière vers ledit support arrière;

un guidon (86) fixé au niveau de l'extrémité supérieure desdites fourches avant;

une selle (84) fixée au niveau de l'extrémité supérieure dudit montant arrière; et

une zone avant définie par les fourches avant (88), la poudre articulée (96), le montant arrière (94) et l'élément d'entretoise (92) formant un 55 polygone à un cinq côtés; et

une zone arrière définie par le montant arrière (94), la traverse arrière (107), l'élément d'entretoise (92) formant un polygone à cinq côtés.

16. Mécanisme d'embrayage à roue libre pour vélo d'exercice (42), le vélo comportant un cadre (80) et un volant (44) à inertie élevée ayant un moyeu (62) au centre de rotation, le volant étant supporté de manière rotative sur le cadre au niveau du moyen et un train d'entraînement pouvant être entraîné dans des directions vers l'avant et vers l'arrière pour faire tourner le volant, le mécanisme d'embrayage comportant:

> une roue dentée esclave (54) fixée sur le volant au niveau du moyeu:

un embrayage (40) positionné en prise avec la roue dentée esclave et le moyeu en créant un contact de friction entre la roue dentée et le moyeu, et créant une force exempte de rupture; et

dans lequel lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la roue dentée esclave et le moyeu se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, le mécanisme d'embrayage glisse entre la roue dentée esclave et le moyeu, en permettant à la roue dentée esclave et au volant de se déplacer indépendamment l'un de l'autre.

17. Mécanisme d'embrayage selon la revendication 16, dans lequel:

> la roue dentée esclave définit une bague (58) de roue dentée montée sur le moyeu et définit une bague de contact (130,132,312,329,330); un palier unidirectionnel (66) est monté entre la bague de roue dentée et le moyeu pour permettre à la bague de roue dentée d'entraîner le moyeu lorsque la baque de roue dentée est entraînée dans la direction vers l'avant, et pour permettre à la bague de roue dentée de tourner indépendamment du moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'arrière:

un rebord de contact (120,122.322) monté de manière fixe sur le moyeu en correspondance avec la bague de contact;

des moyens de compression (72,73,152,200, 240,242,342) montés sur ledit volant pour contraindre le rebord et la bague l'un vers l'autre; un élément de matériau d'embrayage (70,158. 178,186,210,212,244,246,340) positionné entre ledit rebord de contact et ladite bague, et serré entre eux par les moyens de compression pour entraîner le rebord de contact à se déplacer en liaison avec la bague de roue dentée, le contact créant une force exempte de rupture

45

15

20

25

nécessaire pour entraîner la bague de roue dentée à se déplacer indépendamment du rebord de contact; et

dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et le rebord de contact se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, le rebord de contact glisse par rapport à la bague, en permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

18. Mécanisme d'embrayage selon la revendication 16, dans lequel:

la roue dentée esclave définit une bague (58) de roue dentée montée sur le moyeu et définit des bagues de contact intérieure (132,329) et extérieure (130,330);

un palier unidirectionnel (66) est monté entre la bague de roue dentée et le moyeu pour permettre à la bague de roue dentée d'entraîner le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'avant, et pour permettre à la bague de roue dentée de tourner librement sur le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'arrière;

un rebord de contact intérieur (122) est monté de manière fixe sur le moyeu en correspondance avec la bague de contact intérieure, et un rebord de contact extérieur monté de manière fixe sur le moyeu en correspondance avec la bague de contact extérieure:

des moyens de compression (72,73,152,200, 240,242,342) montés sur ledit volant pour contraindre le rebord intérieur et la bague intérieure l'un vers l'autre, et pour contraindre le rebord extérieur et la bague extérieure l'un vers l'autre; un élément de matériau d'embrayage (70,158, 178,186,210,212,244,246,340) positionné entre ledit rebord de contact extérieur et ladite bague extérieure, et entre ledit rebord de contact intérieur et ladite bague intérieure, est serré entre ceux-ci par les moyens de compression pour entraîner les rebords de contact intérieur et extérieur à se déplacer en liaison avec la bague de roue dentée, le contact créant une force exempte de rupture nécessaire pour entraîner la bague de roue dentée à se déplacer indépendamment des rebords de contact intérieur et extérieur:

dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et les rebords intérieur et extérieur se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, les rebords de contact intérieur et extérieur glissent par rapport aux bagues intérieure et extérieure, permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

- 19. Mécanisme d'embrayage selon la revendication 17,
 dans lequel lesdits moyens de compression sont une rondelle Belleville (200,240,242).
 - 20. Mécanisme d'embrayage selon la revendication 17, dans lequel lesdits moyens de compression sont plusieurs rondelles Belleville (200,240,242).
 - Mécanisme d'embrayage selon la revendication 20, dans lequel lesdits moyens de compression sont deux rondelles Belleville positionnées dos à dos (240,242).
 - 22. Mécanisme d'embrayage selon la revendication 17, dans lequel lesdits moyens de compression sont un matériau en élastomère (73).
 - 23. Mécanisme d'embrayage selon la revendication 18, dans lequel lesdits moyens de compression sont une rondelle Belleville (200,240,242).
- 30 24. Mécanisme d'embrayage selon la revendication 18, dans lequel lesdits moyens de compression sont plusieurs rondelles Belleville (200,240,242).
- 25. Mécanisme d'embrayage selon la revendication 23, dans lequel lesdits moyens de compression sont deux rondelles Belleville positionnées dos à dos (240,242).
- 26. Mécanisme d'embrayage seton la revendication 18,
 dans lequel lesdits moyens de compression sont un matériau en élastomère (73).
 - 27. Mécanisme d'embrayage selon la revendication 16, dans lequel:

la roue denté esclave définit une bague (58) de roue dentée montée sur le moyeu comportant une bague de contact (130,132,312,329,330); un palier unidirectionnel (66) monté entre la bague, de roue dentée et le moyeu pour permettre à la bague de roue dentée d'entraîner le moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'avant, et pour permettre à la bague de roue dentée de tourner indépendamment du moyeu lorsque la bague de roue dentée est entraînée dans la direction vers l'arrière;

un frein à bande (260) monté de manière fixe

45

50

10

15

20

sur le volant, le frein à bande ayant une courroie (274) fixée sur le boîtier (260), la courroie étant en contact de manière frictionnelle avec la bague de contact qui entraîne le volant à se déplacer en liaison avec la bague de roue dentée, et créant une force exempte de rupture nécessaire pour entraîner la courroie à glisser sur la bague de contact en permettant à la bague de roue dentée de se déplacer indépendamment du volant; et

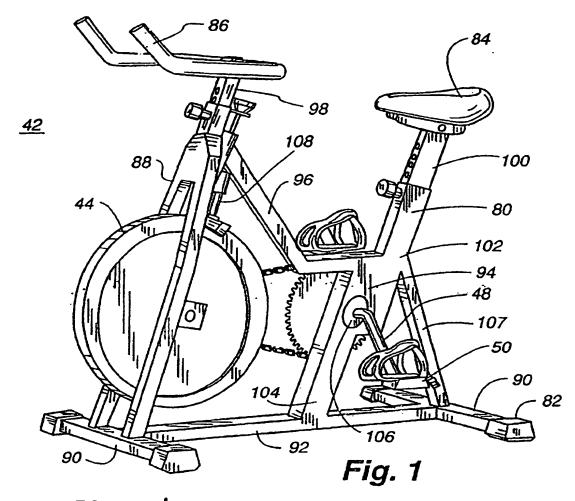
dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et le volant se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force exempte de rupture, la bande glisse par rapport à la bague de contact, permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

28. Mécanisme d'embrayage selon la revendication 16, dans lequel:

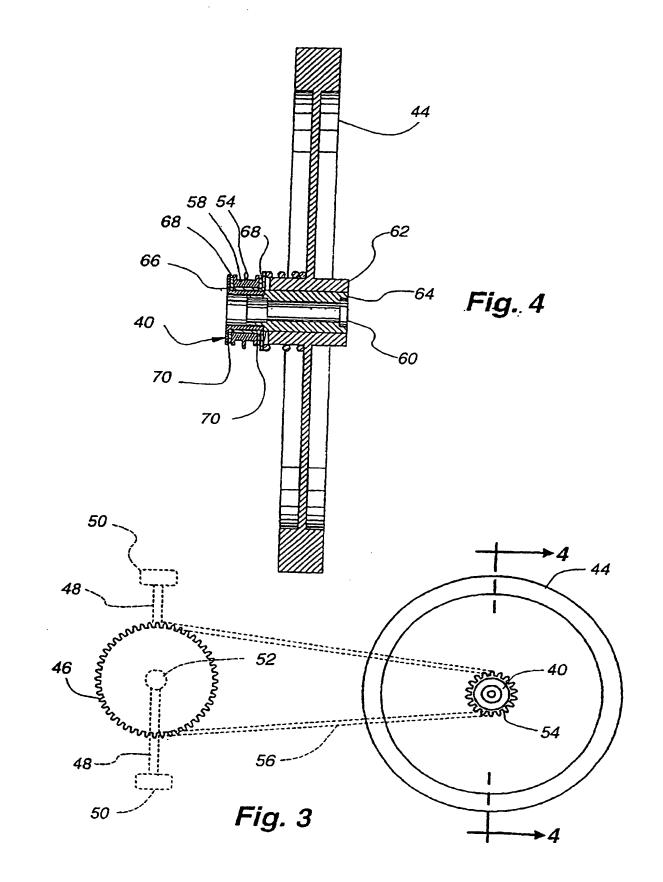
la roue dentée esclave définit une bague (58) ²⁵ de roue dentée montée sur le moyeu comportant une bague de contact (130,132,312,329, 330);

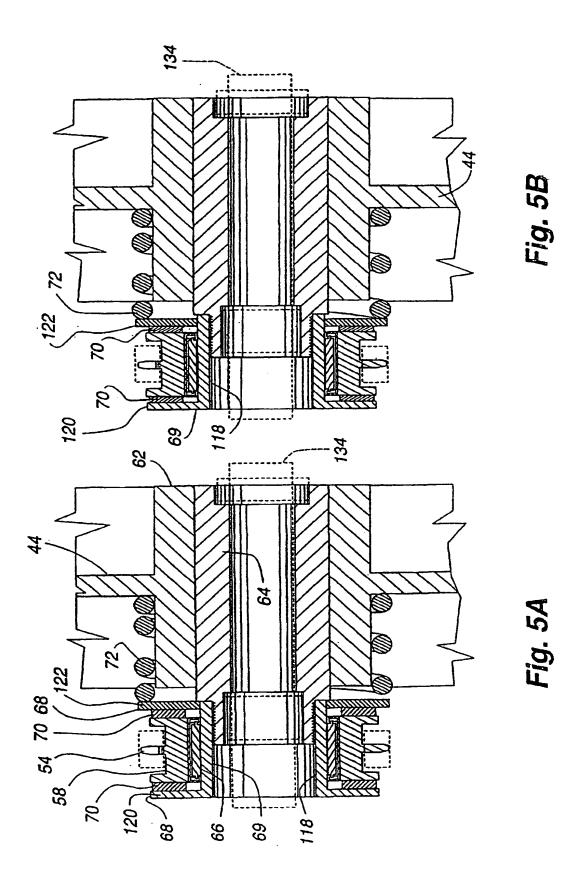
un palier unidirectionnel (66) monté entre la bague de roue dentée et le moyeu pour permettre 30 à la bague de roue dentée d'entraîner l'axe lorsque la bague de roue dentée est entraînée dans une direction vers l'avant, et pour permettre à la bague de roue dentée de tourner indépendamment sur l'axe lorsque la bague de roue 35 dentée est entraînée dans la direction vers l'arrière;

un frein de compression (304) monté de manière fixe sur le volant, le frein de compression ayant un élément de compression en arc de 40 cercle (310) en contact de manière frictionnelle avec la bague de contact, ce qui entraîne le volant à se déplacer en liaison avec la bague de roue dentée, et créant une force exempte de rupture nécessaire pour entraîner l'élément de 45 compression en arc de cercle à glisser sur la bague de contact en permettant à la bague de roue dentée de se déplacer indépendamment du volant; et

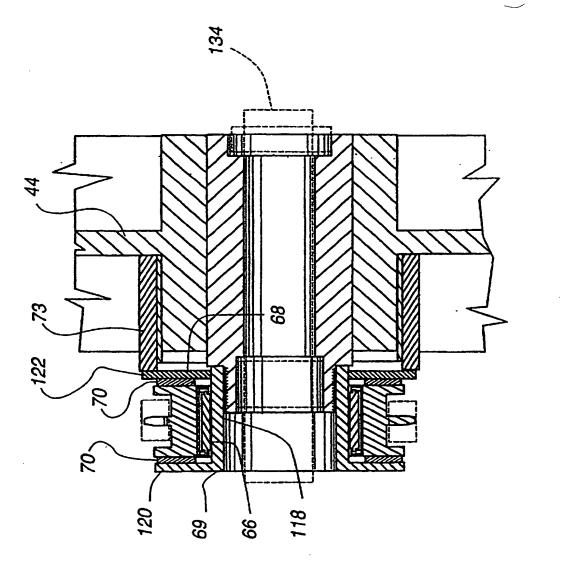

dans lequel, lorsque ledit train d'entraînement est actionné dans la direction vers l'avant, la bague de roue dentée et le volant se déplacent ensemble, et lorsque le train d'entraînement est actionné dans la direction vers l'arrière et surmonte la force ⁵⁵ exempte de rupture, l'élément de compression en arc de cercle glisse par rapport à la bague de contact, permettant à la bague de roue dentée et au volant de se déplacer indépendamment l'un de l'autre.

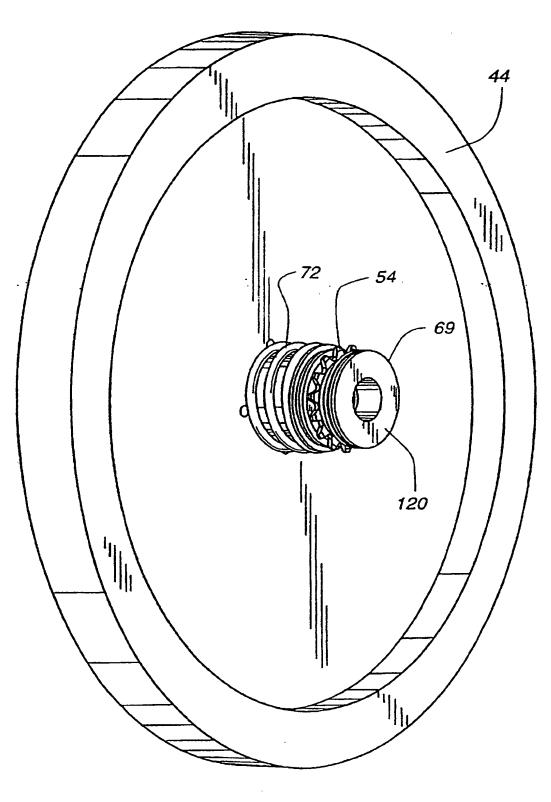
5

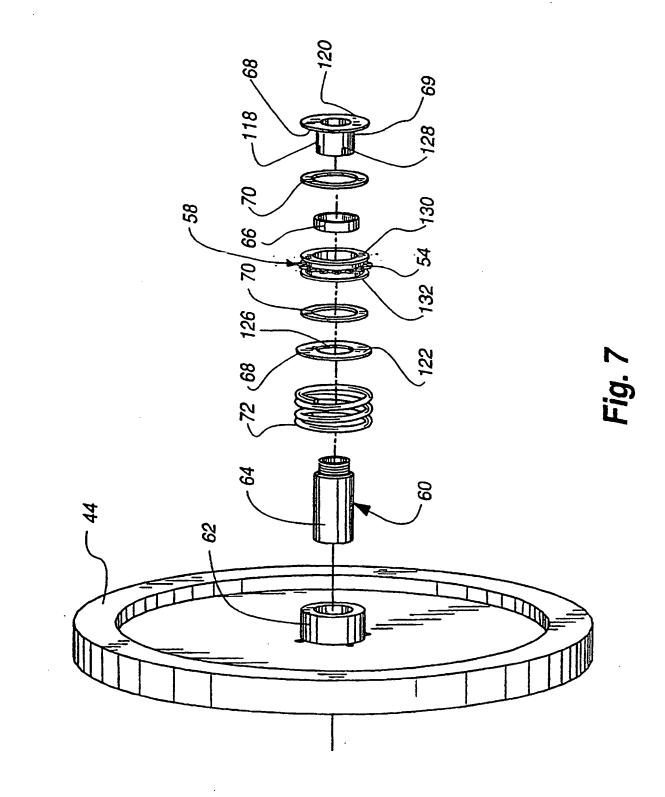

.


35

40






...

- .

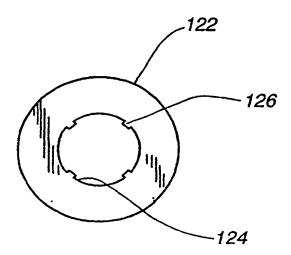


Fig. 8

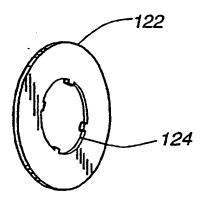
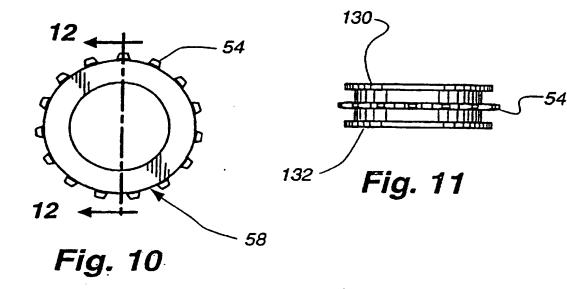
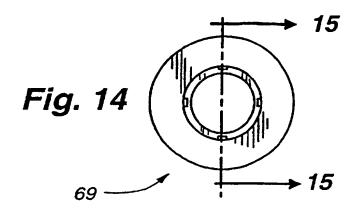



Fig. 9

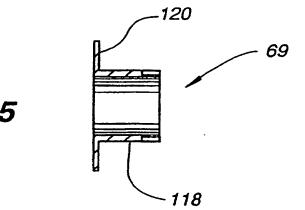
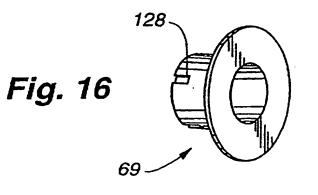
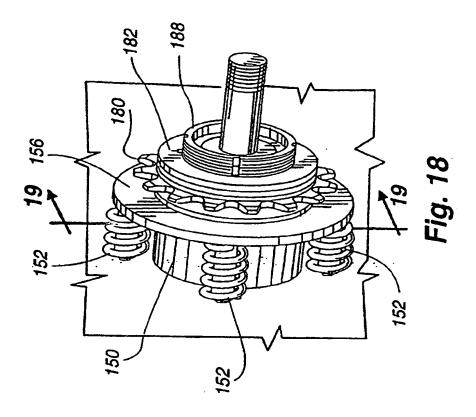
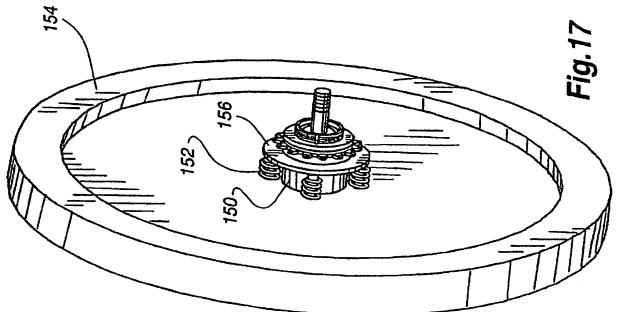


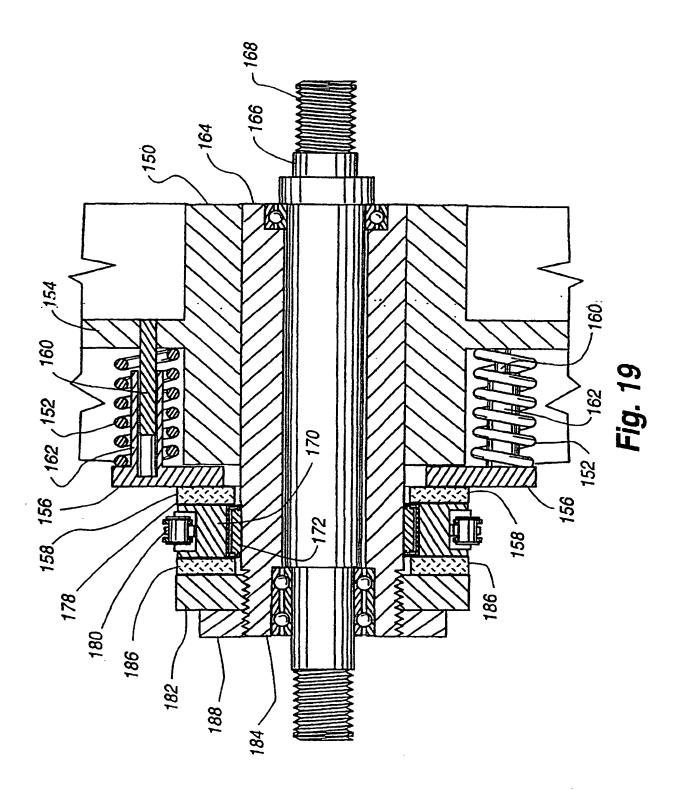
58 132 130

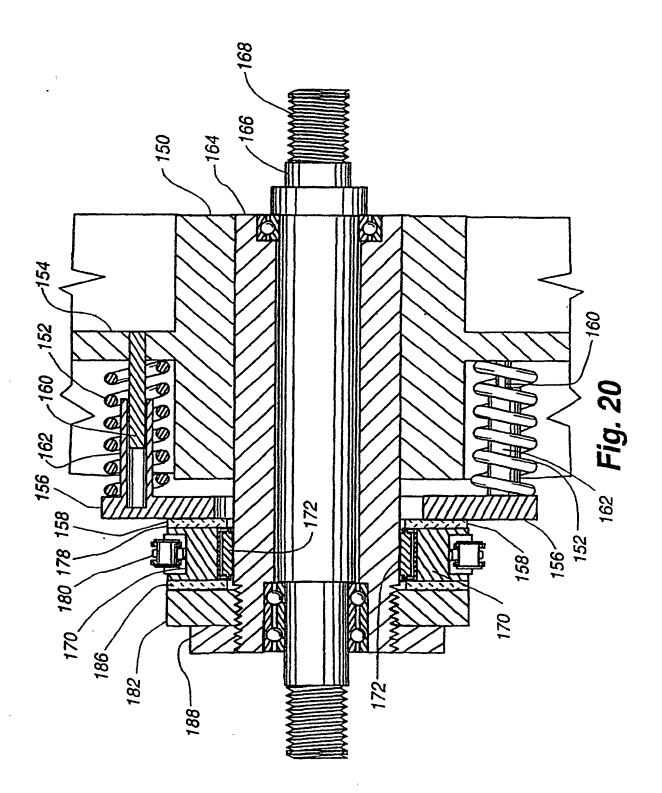
Fig. 12

.

Fig. 13


Fig. 15



.;

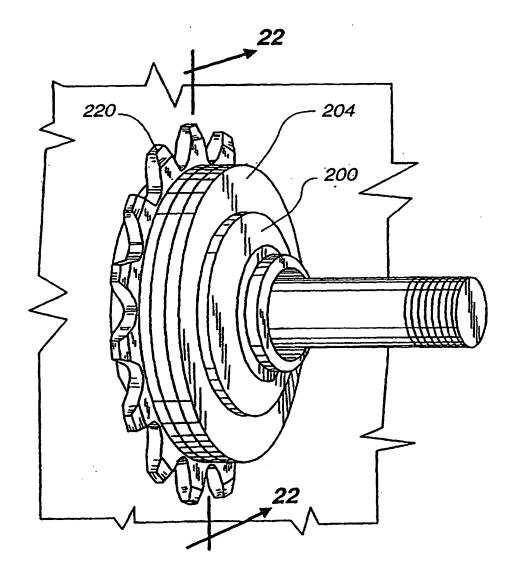
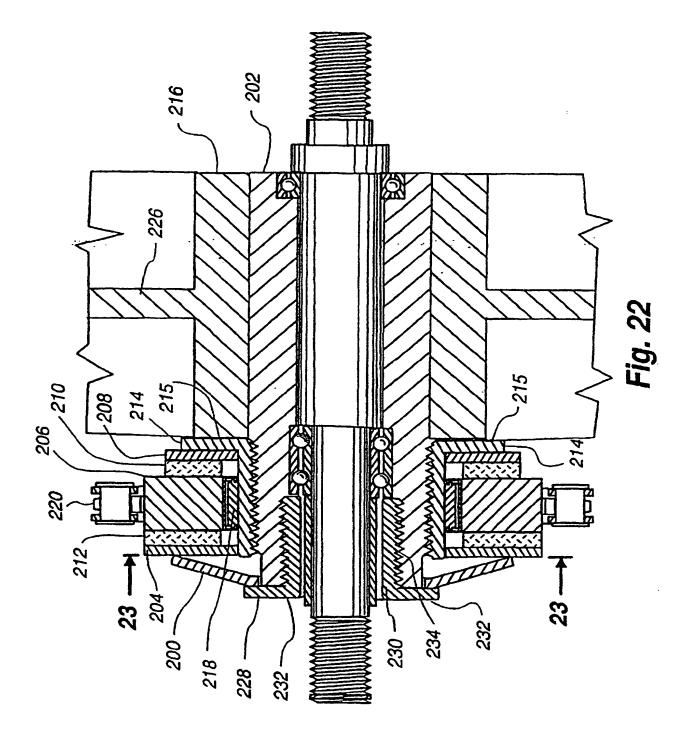
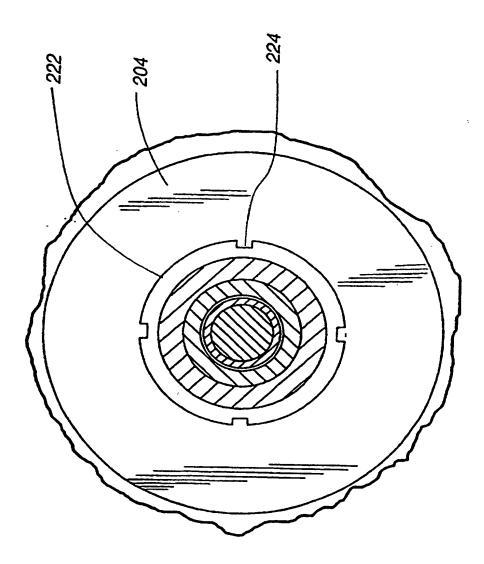
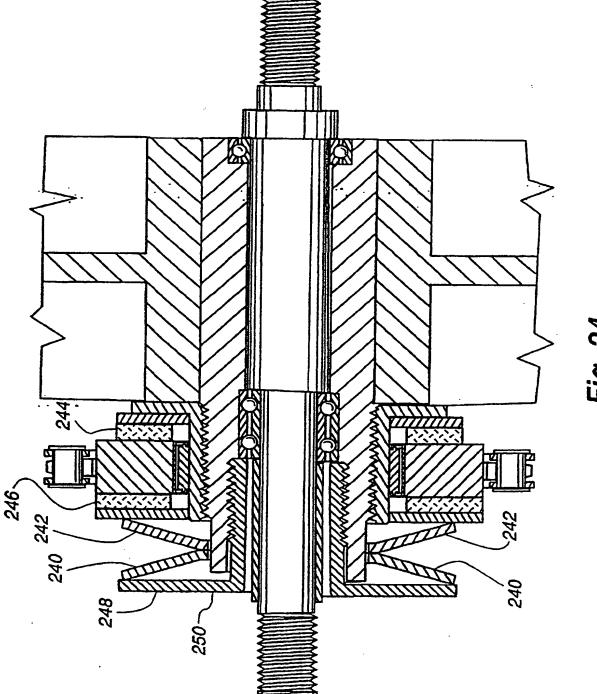




Fig. 21

.



.

-

Fig. 23

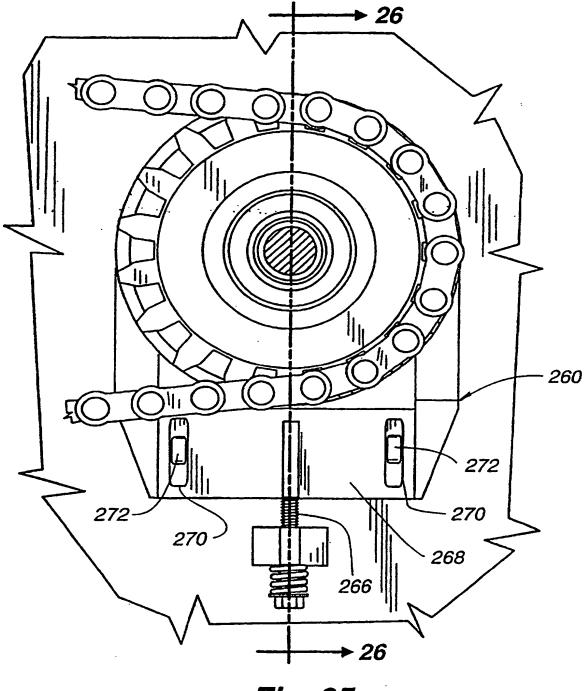
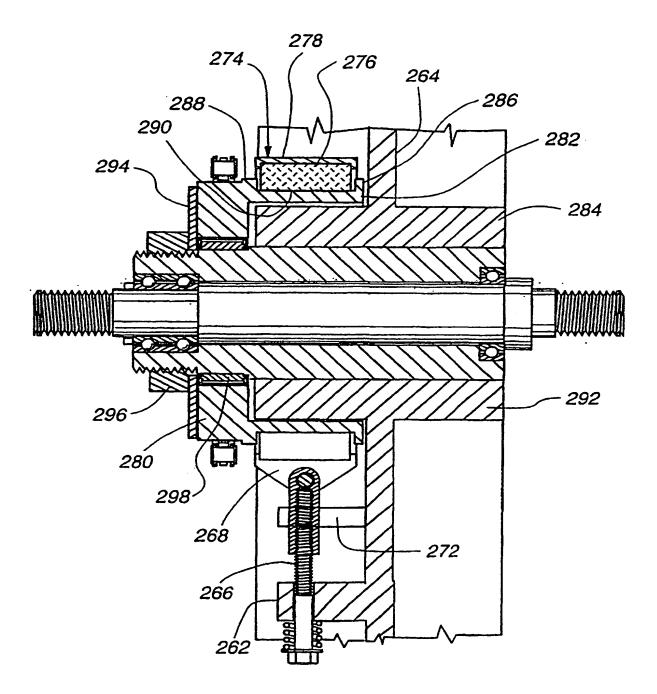
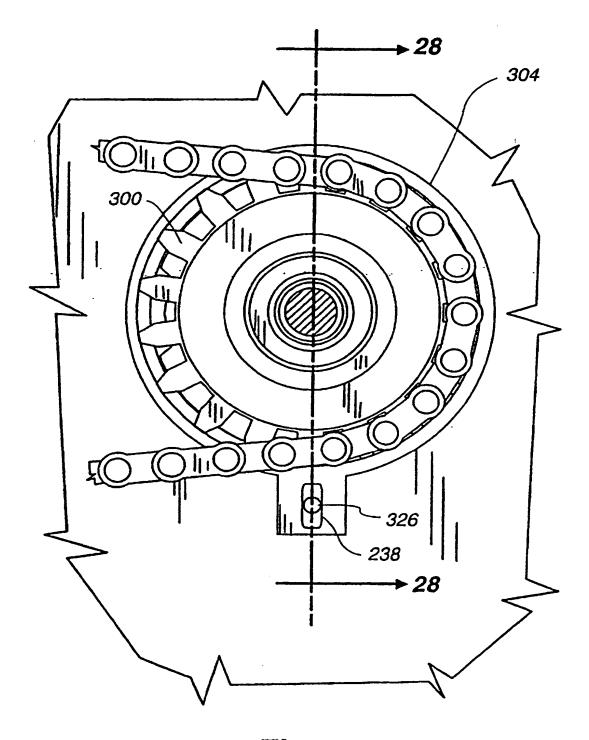
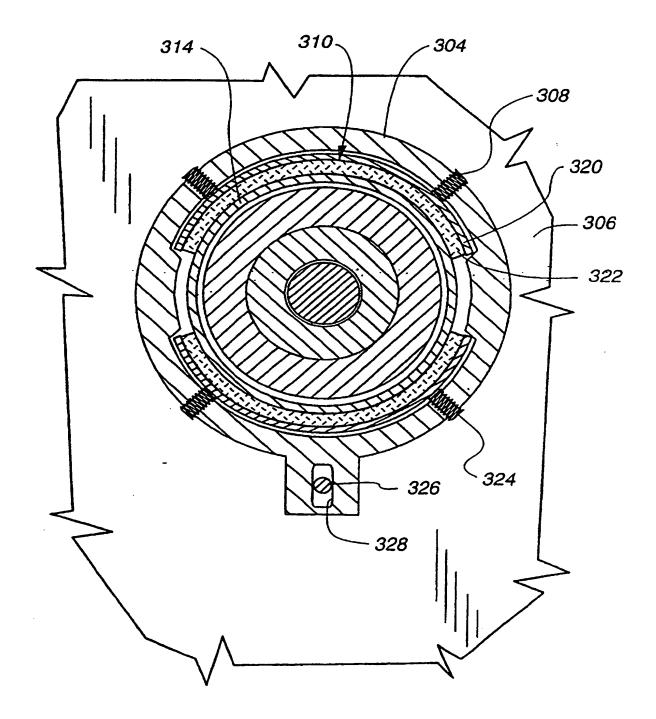
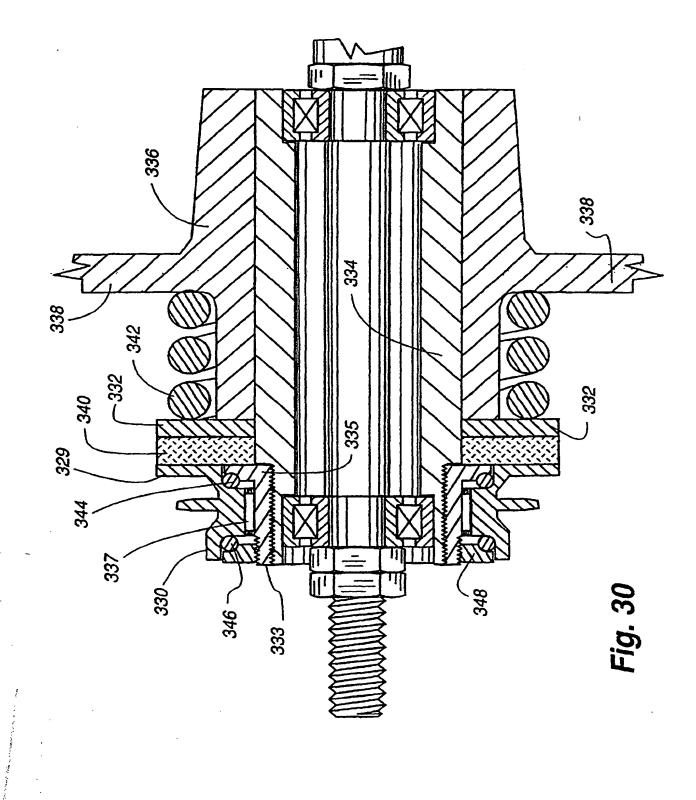




Fig. 25

r



•


•

.

· :

